□ABCD中,AB⊥AC,AB=1,BC=,對角線BD、AC交于點O. 將直線AC繞點O順時針旋轉(zhuǎn)分別交BC、AD于點E、F. (∠AOF為旋轉(zhuǎn)角)
(1)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(2)證明:當∠AOF=90°時,四邊形ABEF是平行四邊形;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能請說明理由;如果能,求出此時AC繞點O順時針旋轉(zhuǎn)的角度.
(1)∵四邊形ABCD是平行四邊形,
∴AO=CO,AD∥BC,
∴∠FAO=∠ECO,
∴在△AOF和△COE中,
∠AOF=∠COE(對頂角相等)
∠FAO=∠EOC
AO=CO,
∴△AOF≌△COE,
∴CE=AF;
(2)AC旋轉(zhuǎn)后的位置如圖所示.
∵∠AOF=∠BAC=90°,
∴AB∥FE,
又∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴四邊形ABEF是平行四邊形;
(3)①可能.當EF⊥BD時,四邊形BEDF是菱形.
∵△AOF≌△COE(已證)
∴EO=FO,
又∵四邊形ABCD是平行四邊形,
∴BO=DO,
又∵EF⊥BD,
∴四邊形BEDF是菱形;
②∵AB=1,BC=
∴AC==2,
∴AO=AC=1,
∴△ABO是等腰直角三角形,∠AOB=45°,
又∵∠BOF=90°,
∴∠AOF=45°,即旋轉(zhuǎn)角為45°.
【解析】(1)先根據(jù)四邊形ABCD是平行四邊形可得出AO=CO,AD∥BC,由全等三角形的判定定理可得出△AOF≌△COE,由全等三角形的性質(zhì)即可得出結(jié)論;
(2)根據(jù)平行線的判定定理得出AB∥FE,再根據(jù)四邊形ABCD是平行四邊形可得出AD∥BC,進而可判斷出四邊形ABEF是平行四邊形;
(3)①由△AOF≌△COE可得出EO=FO,再根據(jù)四邊形ABCD是平行四邊形可知BO=DO,由于EF⊥BD,所以四邊形BEDF是菱形;
②先根據(jù)△ABC是直角三角形,利用勾股定理可得出AC的長,可判斷出△ABO是等腰直角三角形,由等腰直角三角形的性質(zhì)可得出∠AOF=45°,即旋轉(zhuǎn)角為45°.
【解析】當x=-2時,y1=-;當x=-1時,y2==1;當x=1時,y3=-1.
∴y2>y1>y3
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com