23、如圖,將矩形紙片ABCD沿EF折疊,使點A與點C重合,點D落在點G處,EF為折痕.
(1)求證:△FGC≌△EBC;
(2)若AB=8,AD=4,求四邊形ECGF(陰影部分)的面積.
分析:(1)根據(jù)折疊性質(zhì),GC=AD=BC,∠G=∠D=∠B=90°.再證∠GCF=∠BCE,根據(jù)ASA判定全等;
(2)由(1)可知,陰影面積=四邊形BCFE面積=矩形面積的一半.
解答:解:(1)∵ABCD是矩形,∴AD=BC,∠D=∠B=90°.
根據(jù)折疊的性質(zhì),有GC=AD,∠G=∠D.
∴GC=BC,∠G=∠B.
又∠GCF+∠ECF=90°,∠BCE+∠ECF=90°,
∴∠GCF=∠BCE.
∴△FGC≌△EBC;

(2)由(1)知,四邊形ECGF的面積=四邊形EADF的面積=四邊形EBCF的面積=矩形ABCD的面積的一半.
∵AB=8,AD=4,∴矩形ABCD的面積=8×4=32,
∴陰影部分的面積=16.
點評:此題通過折疊考查三角形全等的判定及圖形面積的計算等知識點,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)動手操作:
如圖①,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點c'處,折痕為EF,若∠ABE=20°,那么∠EFC'的度數(shù)為
 

(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請說明理由.
精英家教網(wǎng)
(3)實踐與運用:
將矩形紙片ABCD 按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點E,與BC邊交于點F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點A、點D都與點F重合,展開紙片,此時恰好有MP=MN=PQ(如圖④),求∠MNF的大。
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•松北區(qū)三模)如圖,將矩形紙片ABCD折痕,使點D落在點線段AB的中點F處.若AB=4,則邊BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將矩形紙片ABCD沿其對角線AC折疊,使點B落到點B′的位置,AB′與CD交于點E.
(1)求證:△AEC是等腰三角形;
(2)若P為線段AC上一動點,作PG⊥AB′于G、PH⊥DC于H,求證:PG+PH=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實踐與運用:
如圖,將矩形紙片ABCD按如下順序進(jìn)行折疊:對折、展平,得折痕EF(如圖①);沿GC折疊,使點B落在EF上的點B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點C落在DH上的點C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請說明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案