【題目】如圖,在△ABC中,ADBC邊上的中線,且AD=AC,DEBC,DEAB相交于點(diǎn)E,ECAD相交于點(diǎn)F

(1)求證:△ABC∽△FCD;

(2)過點(diǎn)AAMBC于點(diǎn)M,求DEAM的值;

(3)SFCD=5,BC=10,求DE的長(zhǎng).

【答案】(1)證明見解析;(2)(3)

【解析】

(1)利用DBC邊上的中點(diǎn),DEBC可以得到∠EBC=ECB,而由AD=AC可以得到∠ADC=ACD,再利用相似三角形的判定定理,就可以證明題目結(jié)論;

(2)根據(jù)相似三角形的性質(zhì)和等腰三角形的性質(zhì)定理,解答即可;

(3)利用相似三角形的性質(zhì)就可以求出三角形ABC的面積,然后利用面積公式求出AM的值,結(jié)合,即可求解.

(1)DBC邊上的中點(diǎn),DEBC,

BD=DC,∠EDB=EDC=90°,

DE=DE,

∴△BDE≌△EDCSAS

∴∠B=DCE,

AD=AC,

∴∠ADC=ACB

∴△ABC∽△FCD;

(2)AD=ACAMDC,

DM=DC,

BD=DC

,

DEBC,AMBC

DEAM,

(3)過點(diǎn)AAMBC,垂足是M,

∵△ABC∽△FCD,BC=2CD,

,

SFCD=5,

SABC=20,

又∵BC=10,

AM=4

DEAM

,

DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校王老師組織九(1)班同學(xué)開展數(shù)學(xué)活動(dòng),某天帶領(lǐng)同學(xué)們測(cè)量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測(cè)得電線桿頂端A的仰角為30°,在C處測(cè)得電線桿頂端A的仰角為45°,斜坡與地面成60°角,CD4m,請(qǐng)你根據(jù)這些數(shù)據(jù)求電線桿的高AB.(結(jié)果用根號(hào)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃粽子的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,BC,D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請(qǐng)根據(jù)以上信息回答:

1)將兩幅不完整的圖補(bǔ)充完整;

2)本次參加抽樣調(diào)查的居民有多少人?

3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D粽的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績(jī)x/

頻數(shù)

頻率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

請(qǐng)根據(jù)所給信息,解答下列問題:

(1)m   ,n   

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)若成績(jī)?cè)?/span>90分以上(包括90)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將BCF沿BF對(duì)折,得到BPF,延長(zhǎng)FPBA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是(

AE=BF;AEBF;sinBQP=;S四邊形ECFG=2SBGE

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)I為△ABC的內(nèi)心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點(diǎn)與I重合,則圖中陰影部分的周長(zhǎng)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx 2 +2mx4m≠0)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12

1)求這個(gè)二次函數(shù)的解析式;

2)點(diǎn)D的坐標(biāo)為(-2,1),點(diǎn)P在二次函數(shù)的圖象上,∠ADP為銳角,且tanADP=2,求出點(diǎn)P的橫坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:每個(gè)內(nèi)角都相等的八邊形叫做等角八邊形.容易知道,等角八邊形的內(nèi)角都等于135°.下面,我們來研究它的一些性質(zhì)與判定:

1)如圖1,等角八邊形ABCDEFGH中,連結(jié)BF

①請(qǐng)直接寫出∠ABF+∠GFB的度數(shù).

②求證:ABEF

③我們把ABEF稱為八邊形的一組正對(duì)邊.由②同理可得:BCFGCDGH,DEHA這三組正對(duì)邊也分別平行.請(qǐng)模仿平行四邊形性質(zhì)的學(xué)習(xí)經(jīng)驗(yàn),用一句話概括等角八邊形的這一性質(zhì).

2)如圖2,等角八邊形ABCDEFGH中,如果有ABEF,BCFG,則其余兩組正對(duì)邊CDGH,DEHA分別相等嗎?證明你的結(jié)論.

3)如圖3,八邊形ABCDEFGH中,若四組正對(duì)邊分別平行,則顯然有∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.請(qǐng)?zhí)骄浚涸摪诉呅沃辽傩枰阎獛讉(gè)內(nèi)角為135°,才能保證它一定是等角八邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線x軸交于點(diǎn)AC(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,頂點(diǎn)為D.點(diǎn)Q為線段BC的三等分點(diǎn)(靠近點(diǎn)C.

1)點(diǎn)M為拋物線對(duì)稱軸上一點(diǎn),點(diǎn)E為對(duì)稱軸右側(cè)拋物線上的點(diǎn)且位于第一象限,當(dāng)的周長(zhǎng)最小時(shí),求面積的最大值;

2)在(1)的條件下,當(dāng)的面積最大時(shí),過點(diǎn)E軸,垂足為N,將線段CN繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)N,再將點(diǎn)N向上平移個(gè)單位長(zhǎng)度.得到點(diǎn)P,點(diǎn)G在拋物線的對(duì)稱軸上,請(qǐng)問在平面直角坐標(biāo)系內(nèi)是否存在一點(diǎn)H,使點(diǎn)D,P,G,H構(gòu)成菱形.若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案