如圖,直線AB、CD被直線EC所截,EC交AB于點F,如果∠AFE+∠C=180°,那么你能得到什么結(jié)論?試用不同的方法證明你的結(jié)論.

答案:略
解析:

ABCD

證明:(方法一)由∠AFE=∠CFB,∠AFE+C180°,得∠CFB+∠C=180°.所以AB∥CD.

(方法二)由∠AFE+C180°,∠AFE+AFC180°,得∠AFC=∠C.所以AB∥CD.

(方法三)由∠AFE+∠C=180°,∠AFE+∠EFB=180°,得∠EFB=∠C.

所以AB∥CD.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請寫出三對:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請你認真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB、CD、EF相交于點O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB,CD相交于O點,EO⊥CD,垂足為O點,若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習冊答案