如圖,△ABC是銳角三角形,以BC為直徑作⊙O,AD是⊙O的切線(xiàn),從AB上一點(diǎn)E作AB的垂線(xiàn)交AC的延長(zhǎng)線(xiàn)于F,若數(shù)學(xué)公式
求證:AD=AE.

證明:如圖,設(shè)AC交⊙O于點(diǎn)N.連接BN,
∵BC為⊙O的直徑,
∴∠BNC=90°,
∴∠BNA=90°,
∵FE⊥AB,
∴∠AEF=90°=∠BNA,
∠BNA=∠FAE,
∴△ABN∽△AFE,
=,
,
=,即AE2=AN•AC,
∵AD切⊙O于D,ANC為割線(xiàn),
AD2=AN•AC,
即AD=AE.
分析:連接BN,根據(jù)BC為⊙O的直徑,求證△ABN∽△AFE利用其對(duì)應(yīng)邊成比例得AE2=AN•AC,再利用切割線(xiàn)定理得出AD2=AN•AC,然后利用等量代換即可.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)相似三角形的判定與性質(zhì)和切割線(xiàn)定理的理解和掌握,證明此題的關(guān)鍵是作好輔助線(xiàn):連接BN,求證出AE2=AN•AC,和AD2=AN•AC,這是此題的突破點(diǎn).此題有一定難度,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是銳角三角形,正方形DEFG的一邊在BC上,其余兩個(gè)定點(diǎn)在AB,AC上,記△ABC的面積為S1,正方形的面積為S2,則( 。
A、S1≥2S2B、S1≤2S2C、S1>2S2D、S1<2S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面短文:
如圖①,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補(bǔ)成矩形,使△ABC的兩個(gè)頂點(diǎn)為矩形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,那么符合要求的矩形可以畫(huà)出兩個(gè)矩形ACBD和矩形AEFB(如圖②)精英家教網(wǎng)精英家教網(wǎng)
解答問(wèn)題:
(1)設(shè)圖②中矩形ACBD和矩形AEFB的面積分別為S1、S2,則S1
 
S2(填“>”“=”或“<”).
(2)如圖③,△ABC是鈍角三角形,按短文中的要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫(huà)
 
個(gè),利用圖③把它畫(huà)出來(lái).
(3)如圖④,△ABC是銳角三角形且三邊滿(mǎn)足BC>AC>AB,按短文中的要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫(huà)出
 
個(gè),利用圖④把它畫(huà)出來(lái).
(4)在(3)中所畫(huà)出的矩形中,哪一個(gè)的周長(zhǎng)最。繛槭裁?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是銳角三角形,BC=120,高AD=80,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,M、Q在BC上,AD與PN交于點(diǎn)E,請(qǐng)問(wèn)矩形PQMN的面積什么時(shí)候最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是銳角三角形,以BC為直徑作⊙O,AD是⊙O的切線(xiàn),從AB上一點(diǎn)E作AB的垂線(xiàn)交AC的延長(zhǎng)線(xiàn)于F,若
AB
AF
=
AE
AC

求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年山東省濟(jì)南市槐蔭區(qū)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,△ABC是銳角三角形,BC=120,高AD=80,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,M、Q在BC上,AD與PN交于點(diǎn)E,請(qǐng)問(wèn)矩形PQMN的面積什么時(shí)候最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案