精英家教網 > 初中數學 > 題目詳情
(2010•金華)如圖,△ABC內接于⊙O,∠A=40°,則∠BOC的度數為( )

A.20°
B.40°
C.60°
D.80°
【答案】分析:可由同弧所對的圓周角、圓心角的關系求出∠BOC的度數.
解答:解:∵∠BOC、∠A是同弧所對的圓心角和圓周角,
∴∠BOC=2∠A=80°;故選D.
點評:此題主要考查的是圓周角定理:同弧所對的圓周角是圓心角的一半.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《一次函數》(04)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《平面直角坐標系》(02)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

科目:初中數學 來源:2010年浙江省金華市中考數學試卷(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

同步練習冊答案