如圖,在△ABC中,AD是高,AE是角平分線,∠C>∠B,則下列能正確表示∠EAD、∠B、∠C之間的關(guān)系的是( 。
分析:根據(jù)直角三角形兩銳角互余求出∠BAD,再根據(jù)三角形的內(nèi)角和等于180°求出∠BAC的度數(shù),然后根據(jù)角平分線的定義求出∠BAE,再求解即可.
解答:解:∵AD是BC邊上的高,
∴∠BAD=90°-∠B,
∵∠BAC=180°-∠B-∠C,AE是∠BAC的平分線,
∴∠BAE=
1
2
∠BAC=90°-
1
2
(∠C+∠B),
∴∠EAD=∠BAD-∠BAE=90°-∠B-90°+
1
2
(∠C+∠B)=
1
2
(∠C-∠B),即∠EAD=
1
2
(∠C-∠B).
故選B.
點(diǎn)評(píng):本題考查了三角形內(nèi)角和定理,三角形的角平分線的定義,三角形的高線,比較簡(jiǎn)單,準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案