將寬為1cm的長方形紙條折疊成如圖所示的形狀,那么折痕PQ的長是( )

A.1
B.2
C.
D.
【答案】分析:首先作QH⊥PA,垂足為H,則QH=1cm,易證得△APQ為等邊三角形,然后利用三角函數(shù)即可求得PQ的長.
解答:解:如圖,作QH⊥PA,垂足為H,則QH=1cm,
由平行線的性質(zhì),得∠DPA=∠BAC=60°,
由折疊的性質(zhì),得∠DPQ+∠APQ=180°,
即∠DPA+∠APQ+∠APQ=180°,60°+2∠APQ=180°,
∴∠APQ=60°,
又∵∠PAQ=∠BAC=60°,
∴△APQ為等邊三角形,
在Rt△PQH中,sin∠HPQ=,
∴PQ==
故選D.
點評:題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)以及特殊角的三角函數(shù)問題.此題難度適中,注意掌握數(shù)形結(jié)合思想應(yīng)用,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意證得△APQ為等邊三角形是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

兩個長為2cm,寬為1cm的長方形,擺放在直線l上(如圖①),CE=2cm,將長方形ABCD繞著點C順時針旋轉(zhuǎn)α角,將長方形EFGH繞著點E逆時針旋轉(zhuǎn)相同的角度.
(1)當(dāng)旋轉(zhuǎn)到頂點D、H重合時,連接AG(如圖②),求點D到AG的距離;
(2)當(dāng)α=45°時(如圖③),求證:四邊形MHND為正方形.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)將寬為1cm的長方形紙條折疊成如圖所示的形狀,那么折痕PQ的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

將寬為1cm的長方形紙條折疊成如圖所示的形狀,那么折痕PQ的長是


  1. A.
    1
  2. B.
    2
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(14):25.2 旋轉(zhuǎn)變換(解析版) 題型:解答題

兩個長為2cm,寬為1cm的長方形,擺放在直線l上(如圖①),CE=2cm,將長方形ABCD繞著點C順時針旋轉(zhuǎn)α角,將長方形EFGH繞著點E逆時針旋轉(zhuǎn)相同的角度.
(1)當(dāng)旋轉(zhuǎn)到頂點D、H重合時,連接AG(如圖②),求點D到AG的距離;
(2)當(dāng)α=45°時(如圖③),求證:四邊形MHND為正方形.

查看答案和解析>>

同步練習(xí)冊答案