精英家教網 > 初中數學 > 題目詳情

某地出租車計費方法如圖,x(km)表示行駛里程,y(元)表示車費,請根據圖象解答下列問題:

(1)該地出租車的起步價是   元;

(2)當x>2時,求y與x之間的函數關系式;

(3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?


              解:(1)該地出租車的起步價是7元;

(2)設當x>2時,y與x的函數關系式為y=kx+b,代入(2,7)、(4,10)得

解得

∴y與x的函數關系式為y=x+4;

(3)把x=18代入函數關系式為y=x+4得

y=×18+4=31.

答:這位乘客需付出租車車費31元.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:


已知點M(m﹣1,m)在第二象限,則m的取值范圍是 

查看答案和解析>>

科目:初中數學 來源: 題型:


函數y=的自變量x的取值范圍是(  )

A.  x≠3          B.x≥﹣1且x≠3  C.x≥﹣1        D. x≤﹣1或x≠3

查看答案和解析>>

科目:初中數學 來源: 題型:


如圖,直線l經過第二、三、四象限,l的解析式是y=(m﹣2)x+n,則m的取值范圍在數軸上表示為(  )

A.                   B.

C.             D.

查看答案和解析>>

科目:初中數學 來源: 題型:


一次函數y=kx+b,當1≤x≤4時,3≤y≤6,則的值是 

查看答案和解析>>

科目:初中數學 來源: 題型:


如圖,一次函數y=﹣x+m的圖象和y軸交于點B,與正比例函數y=x圖象交于點P(2,n).

(1)求m和n的值;

(2)求△POB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:


如圖,A點的坐標為(﹣4,0),直線y=x+n與坐標軸交于點B,C,連接AC,如果∠ACD=90°,則n的值為( 。

A.  ﹣2           B.﹣        C.﹣        D. ﹣

查看答案和解析>>

科目:初中數學 來源: 題型:


一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后都停留一段時間,然后分別按原速一同駛往甲地后停車.設慢車行駛的時間為x小時,兩車之間的距離為y千米,圖中折線表示y與x之間的函數圖象,請根據圖象解決下列問題:

(1)甲乙兩地之間的距離為   千米;

(2)求快車和慢車的速度;

(3)求線段DE所表示的y與x之間的函數關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:


當x=        時,分式的值是0。

查看答案和解析>>

同步練習冊答案