【題目】如圖,菱形ABCD中,對(duì)角線AC、BD交于O點(diǎn),DE∥AC,CE∥BD

1)求證:四邊形OCED為矩形;

2)在BC上截取CFCO,連接OF,若AC16BD12,求四邊形OFCD的面積.

【答案】1)證明見解析;(2

【解析】

1)由DE∥ACCE∥BD可得四邊形OCED為平行四邊形,又AC⊥BD從而得四邊形OCED為矩形;

2)過點(diǎn)OOH⊥BC,垂足為H,由已知可得三角形OBC、OCD的面積,BC的長,由面積法可得OH的長,從而可得三角形OCF的面積,三角形OCD與三角形OCF的和即為所求.

1∵DE∥ACCE∥BD,四邊形OCED為平行四邊形.又四邊形ABCD是菱形,∴AC⊥BD∴∠DOC=90°四邊形OCED為矩形.

2菱形ABCD∴ACBD互相垂直平分于點(diǎn)O,∴ODOBBD6OAOCAC8,∴CF=CO=8,SBOC=SDOC24,在Rt△OBC中,BC10,.作OH⊥BC于點(diǎn)H,則有BC·OH=24,∴OH=,∴SCOF=CF·OH=∴S四邊形OFCDSDOCSOCF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)的延長線上一點(diǎn),直線于點(diǎn),過點(diǎn),垂足為于點(diǎn),連接

1)求證:平分;

2)求的長;

3上的一動(dòng)點(diǎn),于點(diǎn),連接.是否存在點(diǎn),使得?如果存在,請(qǐng)證明你的結(jié)論,并求的長;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(6,5),點(diǎn)E在邊AB上,且AE=2,已知點(diǎn)Py軸上一動(dòng)點(diǎn),連接EP,過點(diǎn)O作直線EP的垂線段OH,垂足為點(diǎn)H,在點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到原點(diǎn)O的過程中,點(diǎn)H的運(yùn)動(dòng)路徑長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知拋物線(a0)x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸負(fù)半軸交于點(diǎn)C,頂點(diǎn)為D,已知S四邊形ACBD=14

1)求點(diǎn)D的坐標(biāo)(用僅含c的代數(shù)式表示);

2)若tan∠ACB=,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線aAB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點(diǎn)PABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在PABPBC,PCA中,若至少有一個(gè)三角形與ABC相似,則稱點(diǎn)PABC的自相似點(diǎn).

例如:圖1,點(diǎn)PABC的內(nèi)部,PBC=A,PCB=ABC,BCP∽△ABC,故點(diǎn)PABC的自相似點(diǎn).

請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,點(diǎn)M曲線C上的任意一點(diǎn),點(diǎn)Nx軸正半軸上的任意一點(diǎn).

(1) 如圖2,點(diǎn)P是OM上一點(diǎn),ONP=M, 試說明點(diǎn)P是MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);

(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求MON的自相似點(diǎn)的坐標(biāo);

(3) 是否存在點(diǎn)M和點(diǎn)N,使MON無自相似點(diǎn),?若存在,請(qǐng)直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-x+3x軸,y軸分別交于BC兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過B,C兩點(diǎn),點(diǎn)A是拋物線與x軸的另一個(gè)交點(diǎn).

1)求此拋物線的函數(shù)解析式;

2)在拋物線上是否存在點(diǎn)P,使SPAB=2SCAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)FH在菱形ABCD的對(duì)角線BD上.

1)求證:BG=DE;

2)若EAD中點(diǎn),FH=2,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,線段AC⊙O的直徑,過A點(diǎn)作直線BF⊙OAB兩點(diǎn),過A點(diǎn)作∠FAC的角平分線交⊙OD,過DAF的垂線交AFE

1)證明DE⊙O的切線;

2)證明AD22AEOA;

3)若⊙O的直徑為10DE+AE4,求AB

查看答案和解析>>

同步練習(xí)冊(cè)答案