如果把如圖中的直角三角形和直角梯形相等的邊拼在一起,可以拼出幾個(gè)不同的平面圖形?

解:

5種.
分析:相等的邊有4對(duì),看拼出幾個(gè)不同的常見的平面圖形即可.
點(diǎn)評(píng):考查學(xué)生的動(dòng)手操作能力;作出一般的平行四邊形是解決本題的易錯(cuò)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來(lái)).
(2)圖中除直角相等外,還有相等的角,請(qǐng)寫出三對(duì):
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
∠EOF
、
∠BOD
∠AOC
(把符合條件的角都填出來(lái))
(2)圖中除直角相等外,還有相等的角,請(qǐng)寫出三對(duì):
∠AOC=∠EOF
;②
∠AOC=∠BOD
;③
∠DOE=∠AOF

(3)①如果∠AOD=160°.那么根據(jù)
對(duì)頂角相等
可得∠BOC=
160
度.
②如果∠AOD=4∠EOF,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O是原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別做勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
(1)求出直線OC的解析式及經(jīng)過O、A、C三點(diǎn)的拋物線的解析式.
(2)試在(1)中的拋物線上找一點(diǎn)D,使得以O(shè)、A、D為頂點(diǎn)的三角形與△AOC全等,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).
(3)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.如果點(diǎn)Q的速度為每秒2個(gè)單位,試寫出點(diǎn)Q的坐標(biāo),并寫出此時(shí)t的取值范圍.
(4)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,這時(shí),直線PQ能否把梯形的面積也分成相等的兩部分?如有可能,請(qǐng)求出t的值;如不可能,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•市中區(qū)一模)如圖,在直角坐標(biāo)系中,O是原點(diǎn),A,B,C三點(diǎn)的坐標(biāo)分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點(diǎn)P,Q同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿OC,CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
(1)求直線OC的解析式.
(2)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.如果點(diǎn)Q的速度為每秒2個(gè)單位,試寫出點(diǎn)Q的坐標(biāo),并寫出此時(shí)t的取值范圍.
(3)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.當(dāng)P,Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,這時(shí),直線PQ能否把梯形的面積也分成相等的兩部分?如有可能,請(qǐng)求出t的值;如不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•攀枝花)如圖,在直角坐標(biāo)系中,已知點(diǎn)A、B在x軸上,且B(t,0)(-1<t<0),等腰△ABC的頂點(diǎn)B在以AC為直徑的半圓D上,點(diǎn)E是直線OC與半圓D除點(diǎn)C以外的另一個(gè)交點(diǎn),連接AE與BC相交于點(diǎn)F.又已知拋物線y=a(x2-2x)向左平移2個(gè)單位長(zhǎng)度后點(diǎn)O恰與點(diǎn)A重合、點(diǎn)M恰與原點(diǎn)O重合,并把平移后所得拋物線記為H.
(1)求證:BF=BO;
(2)如果拋物線H還經(jīng)過點(diǎn)F,試用含t的式子表示a;
(3)若AE經(jīng)過△AOC的內(nèi)心I,試求出此時(shí)經(jīng)過三點(diǎn)A、F、O的拋物線的解析式;
(4)在(3)的條件下,問在拋物線上是否存在點(diǎn)P,使該點(diǎn)關(guān)于直線AF的對(duì)稱點(diǎn)在x軸上?若存在,請(qǐng)求出所有這樣的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案