【題目】如圖,正方形A1B1C1O、A2B2C2C1……按照如圖所示的方式放置,點A1A2、A3、…和點C1、C2、C3、…分別在直線ykx+bk0)和x軸上,已知B11,1),B23,2),B37,4),則B2019的坐標是_____

【答案】220191,22018

【解析】

根據矩形的性質求出點A1A2的坐標,然后利用待定系數(shù)法求一次函數(shù)解析式求出k、b,從而得到一次函數(shù)解析式,再根據一次函數(shù)圖象上點的坐標特征求出A4的坐標,然后求出B4的坐標,,最后根據點的坐標特征的變化規(guī)律寫出Bn的坐標即可.

解:∵點B1B2的坐標分別為(1,1),(3,2),

A10,1),A212),

∵點A1A2在直線ykx+b上,

,

解得

yx+1,

∵點B2的坐標為(3,2),

∴點A3的坐標為(34),

∴點B3的坐標為(7,4),

∴點A4的坐標為(7,8),

∴點B4坐標為(158),

…,

Bn的橫坐標是:2n1,縱坐標是:2n1

Bn的坐標是(2n12n1),

B2019的坐標是(22019122018).

故答案為(220191,22018).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

截長補短法,是初中數(shù)學兒何題中一種輸助線的添加方法,截長就是在長邊上載取一條線段與某一短邊相等,補短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.

1)如圖1ABC是等邊三角形,點D是邊BC下方一點,∠BDC120°,探索線段DA、DB、DC之間的數(shù)量關系.

解題思路:延長DC到點E,使CEBD.連接AE,根據∠BAC+∠BDC180°,可證∠ABD=∠ACE,易證得ABDACE,得出ADE是等邊三角形,所以ADDE,從而探尋線段DA、DB、DC之間的數(shù)量關系.

根據上述解題思路,請直接寫出DA、DBDC之間的數(shù)量關系是___________

(拓展延伸)

2)如圖2,在RtABC中,∠BAC90°ABAC.若點D是邊BC下方一點,∠BDC90°,探索線段DA、DB、DC之間的數(shù)量關系,并說明理由;

(知識應用)

3)如圖3,一副三角尺斜邊長都為14cm,把斜邊重疊擺放在一起,則兩塊三角尺的直角項點之間的距離PQ的長為________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學玩摸球游戲,準備了甲、乙兩個口袋,其中甲口袋中放有標號為1,2,34,55個球,乙口袋中放有標號為1,2,3,44個球.游戲規(guī)則:甲從甲口袋摸一球,乙從乙口袋摸一球,摸出的兩球所標數(shù)字之差(甲數(shù)字乙數(shù)字)大于0時甲勝,小于0時乙勝,等于0時平局.你認為這個游戲規(guī)則對雙方公平嗎?請說明理由.若不公平,請你對本游戲設計一個對雙方都公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD∽四邊形A′B′C′D′,ABBCCDDA=201598,四邊形A′B′C′D′的周長為26,求四邊形A′B′C′D′各邊的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點D在邊AB上.

(1)如圖1,當點E在邊BC上時,求證DE=EB;

(2)如圖2,當點E在△ABC內部時,猜想EDEB數(shù)量關系,并加以證明;

(3)如圖3,當點E在△ABC外部時,EHAB于點H,過點EGEAB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PT與⊙O相交于點T,直線PO與⊙O相交于A,B兩點.已知∠PTA=∠B.

(1)求證:PT是⊙O的切線;

(2)若PT=6,PA=4,求⊙O的半徑;

(3)若PT=TB=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為一圓洞門.工匠在建造過程中需要一根橫梁AB和兩根對稱的立柱CE、DF來支撐,點A、B、C、DO上,CEABEDFABF,且AB2,EF,120°.

(1)求出圓洞門O的半徑;

(2)求立柱CE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用函數(shù)方法研究動點到定點的距離問題.

在研究一個動點Px,0)到定點A1,0)的距離S時,小明發(fā)現(xiàn):

Sx的函數(shù)關系為S并畫出圖像如圖:

借助小明的研究經驗,解決下列問題:

1)寫出動點Px,0)到定點B(-2,0)的距離S的函數(shù)表達式,并求當x取何值時,S取最小值?

2)設動點Px0)到兩個定點M1,0)、N5,0)的距離和為y

①隨著x增大,y怎樣變化?

②當x取何值時,y取最小值,y的最小值是多少?

③當x<1時,證明y隨著x增大而變化的規(guī)律.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,直線交坐標軸于AB兩點,過點C,0)作CDABD,交軸于點E.且△COE≌△BOA.

1)求B點坐標為 ;線段OA的長為

2)確定直線CD解析式,求出點D坐標;

3)如圖2,點M是線段CE上一動點(不與點C、E重合),ONOMAB于點N,連接MN.

①點M移動過程中,線段OMON數(shù)量關系是否不變,并證明;

②當△OMN面積最小時,求點M的坐標和△OMN面積.

查看答案和解析>>

同步練習冊答案