16、如圖,四邊形ABCD是正方形,G是BC邊上任意一點(點G與B、C不重合),AE⊥DG于E,CF∥AE交DG于F.在圖中找出一對全等三角形,并加以證明.
分析:利用正方形的特性可知AD=DC,∠ADC=90°,再結(jié)合題中所給的有關(guān)角的等量關(guān)系可證明△AED≌△DFC.
解答:解:△AED≌△DFC.
證明:∵四邊形ABCD是正方形,
∴AD=DC,∠ADC=90°,
又∵AE⊥DG,CF∥AE,
∴CF⊥DG,
∴∠CFD=90°,
又∵AE⊥DG,
∴∠DEA=90°,
∴∠EAD+∠EDA=90°,
又∵∠CDF+∠EDA=90°,
∴∠EAD=∠FDC,
∴△AED≌△DFC (AAS).
點評:本題考查正方形的性質(zhì)及三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案