解二元一次方程組
2x+y=5
x-3y=6
,既可以用代入消元法也可以用加減消元法,甲、乙、丙三人各自隨機(jī)選擇一種解法,求他們?nèi)诉x擇同一種解法的概率.
考點(diǎn):列表法與樹狀圖法,解二元一次方程組
專題:
分析:首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與他們?nèi)诉x擇同一種解法的情況,再利用概率公式即可求得答案.
解答:解:分別用A和B表示代入消元法和加減消元法,
畫樹狀圖得:

∵共有8種等可能的結(jié)果,他們?nèi)诉x擇同一種解法的有2種情況,
∴他們?nèi)诉x擇同一種解法的概率為:
2
8
=
1
4
點(diǎn)評(píng):本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在⊙0中,已知∠ABC=20°,∠DCA=30°,則∠DOC的大小為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A、F、C、D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且AB∥DE,AB=DE,AC=DF.求證:BC=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在奉賢創(chuàng)建文明城區(qū)的活動(dòng)中,有兩段長(zhǎng)度相等的彩色道磚鋪設(shè)任務(wù),分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工.如圖是反映所鋪設(shè)彩色道磚的長(zhǎng)度y(米)與施工時(shí)間x(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問(wèn)題:
(1)求乙隊(duì)在2≤x≤6的時(shí)段內(nèi),y與x之間的函數(shù)關(guān)系式;
(2)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時(shí)后,施工速度增加到12米/時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).求甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚的長(zhǎng)度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為4的正方形ABCD中,以D為圓心、2為半徑畫圓,點(diǎn)G是⊙D上任意一點(diǎn),連接GD、AG.將GD繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)90°,得到DH,連接CH、GH.
(1)當(dāng)CH與⊙D相切時(shí),
①求證:AG與⊙D相切;
②求點(diǎn)H到CD的距離.
(2)請(qǐng)直接寫出點(diǎn)B到CH的距離的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖(1)是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖(2)的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖(2)中陰影部分的正方形的邊長(zhǎng)等于多少?
 
;
(2)請(qǐng)用兩種不同的方法求圖(2)中陰影部分面積.
方法一:
 
;方法二:
 
;
(3)觀察圖(2),你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(m+n)2,(m-n)2,4mn.
 
;
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:若a+b=7,ab=5,求(a-b)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:(
x-1
x
-
x-2
x+1
)÷
2x2-x
x2+2x+1
,其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,AB=AC,作以AB為直徑的⊙O與邊BC交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.
(1)求證:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠DAB=∠ABC=90°,E為CD的中點(diǎn),聯(lián)結(jié)AE并延長(zhǎng)交BC的延長(zhǎng)線于F;
(1)聯(lián)結(jié)BE,求證:BE=EF.
(2)聯(lián)結(jié)BD交AE于M,當(dāng)AD=1,AB=2,AM=EM時(shí),求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案