如圖,已知長方形ABCD,我們按如下步驟操作可以得到一個特定角:(1)以點A所在直線為折痕,折疊紙片,使點B落在AD上,折痕與BC交于E;(2)將紙片展平后,再一次折疊紙片,以E所在直線為折痕,使點A落在BC上,折痕EF交AD于F,則∠AEF的度數(shù)為


  1. A.
    60°
  2. B.
    67.5°
  3. C.
    72°
  4. D.
    75°
B
分析:根據(jù)折疊的性質可知.
解答:由折疊的性質知,∠AEB=45°,∠AEF=∠CEF,∴∠AEF=(180°-∠AEB)÷2=67.5°.
故選B.
點評:本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形和正方形的性質,平角的概念求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

48、如圖,已知長方形的臺球桌臺ABCD,有黑、白兩球分別位于M、N兩點的位置上,試問:怎樣撞擊白球N,才能讓白球先撞臺邊AB,反彈后再擊中黑球M.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖,已知長方形ABCD中AB=8  BC=10,在邊CD上取一點E,將△ADE折疊使點D恰好落在BC邊上的點F,則DE的長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點B與點D重合,折痕為EF,則EF=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知長方形ABCD沿著直線BD折疊,使點A落在點E處,EB交DC于F,BC=3,AB=4,則點F到直線DB的距離為
15
8
15
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知長方形紙片ABCD,點E,F(xiàn)分別在邊AB,CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B′處,得折痕EM,∠AEF對折,點A落在直線EF上的點A′處,得折痕EN,則圖中與∠B′ME互
余的角是
∠B′EM,∠MEB,∠A′NE
∠B′EM,∠MEB,∠A′NE
 (只需填寫三個角).

查看答案和解析>>

同步練習冊答案