【題目】如圖,直線l1的解析表達式為y=-3x+3,且l1x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2,交于點C

1)求點D的坐標;

2)求直線l2的解析表達式;

3)求ADC的面積.

【答案】(1) D1,0

(2) y=x-6

(3) 可求得點C(2,-3) ,SADC=

【解析】此題考查一次函數(shù)解析式的求法,一次函數(shù)與坐標軸交點的求法,一元二次方程組和二元一次方程組的解法,兩條直線交點的求法,即把兩個一次函數(shù)對應的解析式構成二元一次方程組,求出方程組的解就是兩條直線的交點坐標,三角形面積的求法;

解:(1)因為軸的交點,所以當時, ,所以點

2)因為在直線上,設的解析式為

,所以直線的函數(shù)表達式;

3)由,所以點的坐標為,所以的底高為的縱坐標的絕對值為,所以

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊直角三角尺的直角頂點C疊放在一起.

(1)寫出以C為頂點的相等的銳角,并說明理由;
(2)若射線CB平分∠DCE,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA中點,點P在BC上以每秒1個單位的速度由C向B運動,設運動時間為t秒.

(1)△ODP的面積S=
(2)t為何值時,四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由;
(4)若△OPD為等腰三角形,請寫出所有滿足條件的點P的坐標(請直接寫出答案,不必寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結AD并延長,與BC相交于點E。

(1)若BC=,CD=1,求⊙O的半徑;

(2)取BE的中點F,連結DF,求證:DF是⊙O的切線。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD、AB的中點,下列結論:①∠OBE= ∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正確的是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50度.

(1)若∠AOC=∠AOB,則OC的方向是
(2)OD是OB的反向延長線,OD的方向是
(3)∠BOD可看作是OB繞點O逆時針方向至OD,作∠BOD的平分線OE,OE的方向是;
(4)在(1)、(2)、(3)的條件下,∠COE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店用1000元購進一批套尺,很快銷售一空;商店又用1500元購進第二批同款套尺,購進單價比第一批貴25%,所購數(shù)量比第一批多100套.
(1)求第一批套尺購進的單價;
(2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:3x2y2x32x2yx3),其中x=3,y=2

查看答案和解析>>

同步練習冊答案