【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CAB=40°,連接BD,OD,則∠AOD+∠ABD的度數(shù)為( )

A.100°
B.110°
C.120°
D.150°

【答案】D
【解析】解:∵∠CAB=40°,

∴∠BDC=40°.

∵CD⊥AB,

∴∠ABD=90°﹣40°=50°,

∴∠AOD=2∠ABD=100°,

∴∠AOD+∠ABD=100°+50°=150°.

所以答案是:D.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用垂徑定理和圓周角定理的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,m)是第一象限內(nèi)一點(diǎn),連接OA,將OA繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AB,若反比例函數(shù)y= (x>0)的圖象恰好同時(shí)經(jīng)過(guò)點(diǎn)A、B,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“江畔”禮品店在十一月份從廠家購(gòu)進(jìn)甲、乙兩種不同禮品.購(gòu)進(jìn)甲種禮品共花費(fèi)1500元,購(gòu)進(jìn)乙種禮品共花費(fèi)1050元,購(gòu)進(jìn)甲種禮品數(shù)量是購(gòu)進(jìn)乙種禮品數(shù)量的2倍,且購(gòu)進(jìn)一件乙種禮品比購(gòu)進(jìn)一件甲種禮品多花20元.

⑴求購(gòu)進(jìn)一件甲種禮品、一件乙種禮品各需多少元;

⑵元旦前夕,禮品店決定再次購(gòu)進(jìn)甲、乙兩種禮品共50個(gè).恰逢該廠家對(duì)兩種禮品的價(jià)格進(jìn)行調(diào)整,一件甲種禮品價(jià)格比第一次購(gòu)進(jìn)時(shí)提高了20%,一件乙種禮品價(jià)格比第一次購(gòu)進(jìn)時(shí)降低了5元.如果此次購(gòu)進(jìn)甲、乙兩種禮品的總費(fèi)用不超過(guò)3100元,那么這家禮品店最少可購(gòu)進(jìn)多少件甲種禮品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為2,為坐標(biāo)原點(diǎn),分別在軸、軸上,點(diǎn)邊的中點(diǎn),過(guò)點(diǎn)的直線交線段于點(diǎn),連接,若平分,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績(jī)/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

7

7

1.2

7

8

4.2

1)寫(xiě)出表格中,的值;

2)從方差的角度看,若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?并說(shuō)明理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線,被直線所截,,是平面內(nèi)任意一點(diǎn)(點(diǎn)不在直線,上),設(shè),.下列各式:①,②,③,④,的度數(shù)可能是(

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P31,﹣1),P411),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般情況下是不成立的,但有些數(shù)可以使得它成立,例如:.我們稱使得成立的一對(duì)數(shù)相伴數(shù)對(duì),記為

1)若相伴數(shù)對(duì),試求的值;

2)請(qǐng)寫(xiě)出一個(gè)相伴數(shù)對(duì),其中,且,并說(shuō)明理由;

3)已知相伴數(shù)對(duì),試說(shuō)明也是相伴數(shù)對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三角形中,由三角形的內(nèi)角平分線所形成的角存在一定的規(guī)律,理解并掌握其中的規(guī)律,有助于同學(xué)們鞏固相關(guān)的數(shù)學(xué)知識(shí).

如圖1,中,分別平分,且相交于點(diǎn)勤奮小組的同學(xué)發(fā)現(xiàn):.證明過(guò)程如下:

證明:如圖2,連接并延長(zhǎng),

(依據(jù)1)

分別平分

,(依據(jù)2)

依據(jù)1 ___,依據(jù)2 __;

如圖3,在圖1的基礎(chǔ)上,作的角平分線交于點(diǎn)試探究之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案