【題目】如圖,直線y=kx-6經(jīng)過點(diǎn)A(4,0),直線y=-3x+3與x軸交于點(diǎn)B,且兩直線交于點(diǎn)C.
(1)求k的值.
(2)求△ABC的面積.
(3)在直線y=kx-6上是否存在異于點(diǎn)C的另一點(diǎn)P,使得△ABP與△ABC的面積相等,請直接寫出點(diǎn)P的坐標(biāo).
【答案】(1);(2);(3)存在,P點(diǎn)坐標(biāo)(6,3).
【解析】(1)直接把A點(diǎn)坐標(biāo)代入y=kx﹣6即可求出k;
(2)先確定B點(diǎn)坐標(biāo),再解方程組確定C的坐標(biāo)為(2,﹣3),然后根據(jù)三角形面積公式計(jì)算;
(3)設(shè)P點(diǎn)坐標(biāo)為(a,b),利用△ABP與△ABC的面積相等得到×3×|b|=,解得b=3或b=﹣3(舍去),然后把y=3代入y=x﹣6即可得到P點(diǎn)的橫坐標(biāo).
(1)把A(4,0)代入y=kx﹣6得:0=4k﹣6,解得:k=;
(2)把y=0代入y=﹣3x+3得:﹣3x+3=0,解得:x=1,∴B點(diǎn)坐標(biāo)為(1,0),解方程組得,∴C的坐標(biāo)為(2,﹣3),∴△ABC的面積=×3×(4﹣1)=;
(3)存在.
設(shè)P點(diǎn)坐標(biāo)為(a,b).
∵△ABP與△ABC的面積相等,∴×3×|b|=,∴b=3或b=﹣3(舍去),把y=3代入y=x﹣6得:x﹣6=3,解得:x=6,∴P點(diǎn)坐標(biāo)(6,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )
A.2
B.8
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某銀行去年新增加居民存款10億元人民幣.
(1)經(jīng)測量,100張面值為100元的新版人民幣大約厚0.9厘米,如果將10億元面值為100元的新版人民幣摞起來,大約有多高?
(2)一臺(tái)激光點(diǎn)鈔機(jī)的點(diǎn)鈔速度是8×104張/時(shí),按每天點(diǎn)鈔5小時(shí)計(jì)算,如果讓點(diǎn)鈔機(jī)點(diǎn)一遍10億元面值為100元的新版人民幣,點(diǎn)鈔機(jī)大約要點(diǎn)多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E、F分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC等于( )
A. 45° B. 35° C. 55° D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組建了書法、音樂、美術(shù)、舞蹈、演講五個(gè)社團(tuán),全校每一名學(xué)生都參加且只參加了其中一個(gè)社團(tuán)的活動(dòng).校團(tuán)委從全校學(xué)生中隨機(jī)選取部分學(xué)生進(jìn)行了參加活動(dòng)情況的調(diào)查,并將調(diào)查結(jié)果制成了如圖不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖完成下列問題:
(1)參加本次調(diào)查有 名學(xué)生?
(2)根據(jù)調(diào)查數(shù)據(jù)分析,被調(diào)查的學(xué)生中有 名學(xué)生參加了音樂社團(tuán)?
(3)請你補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動(dòng)點(diǎn),PG⊥AC于點(diǎn)G,PH⊥AB
于點(diǎn)H,M是GH的中點(diǎn),P在運(yùn)動(dòng)過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2,則∠A=90°,再結(jié)合PG⊥AC,PH⊥AB,可證四邊形AGPH是矩形;連接AP,可知當(dāng)AP⊥BC時(shí)AP最短,結(jié)合矩形的兩對角線相等和面積法,求出GH的值,
詳解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四邊形AGPH是矩形.
連接AP,
∴GH=AP.
∵當(dāng)AP⊥BC時(shí),AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值為1.2.
故選D.
點(diǎn)睛: 本題考查了勾股定理的逆定理,矩形的判定與性質(zhì),垂線段最短,面積法求線段的長,需結(jié)合矩形的判定方法,矩形的性質(zhì)以及三角形面積的知識(shí)求解;確定出點(diǎn)P的位置是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
18
【題目】計(jì)算:
(1) (2)
(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+ ;
(2)先化簡,再求值:( ﹣x﹣1)÷ ,其中x是不等式組 的一個(gè)整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、2、3,…是由花盆擺成的圖案,圖1中有1盆花,圖2中有7盆花,圖3中有19盆花,……
根據(jù)圖中花盆擺放的規(guī)律,圖4中,應(yīng)該有__________盆花;第n個(gè)圖形中應(yīng)該有_________盆花。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問:此時(shí)直線ON是否平分∠AOC?請說明理由.
(2)將圖1中的三角板繞點(diǎn)O以每秒6°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為_________(直接寫出結(jié)果).
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚?/span>
∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com