【題目】如圖,在平面直角坐標系中,點O為坐標原點,△ABC是直角三角形,∠ACB=90°,點B、C都在第一象限內(nèi),CA⊥x軸,垂足為點A,反比例函數(shù)y1=的圖象經(jīng)過點B;反比例函數(shù)y2=的圖象經(jīng)過點C(,m).
(1)求點B的坐標;
(2)△ABC的內(nèi)切圓⊙M與BC,CA,AB分別相切于D,E,F(xiàn),求圓心M的坐標.
【答案】(1)點B的坐標為(2,).
(2)點M的坐標為(2﹣1,1).
【解析】
試題分析:(1)先求得點C的坐標,然后根據(jù)平行于x軸上點縱坐標相等,可知點B的縱坐標,然后可求得點B的橫坐標;
(2)連接MD、ME、MF.由點B和點C的坐標可求得AC、BC的長,依據(jù)勾股定理可求得AB的長,然后在△ABC中利用面積法可求得圓M的半徑,從而可求得點M的坐標.
試題解析:(1)∵CA⊥x軸,∠ACB=90°,
∴CB∥x軸.
∵將C(,m)代入函數(shù)y2=得:n==,
∴點C(,).
∴點B的縱坐標為.
∵將y1=代入得: =,解得;x=2,
∴點B的坐標為(2,).
(2)如圖所示:連接ME、MD、MF.
∵⊙M與BC,CA,AB分別相切于D,E,F(xiàn),
∴ME⊥AC,MD⊥BC,MF⊥AB.
∴∠ECD=∠CDM=∠CEM=90°.
∴四邊形CDME為矩形.
∵MD=ME,
∴四邊形CDME為正方形.
∵在Rt△ACB中,AC=,BC=,
∴AB=2.
∵S△ACB=ACBC=(AC+BC+AB)r,
∴⊙M的半徑==﹣1.
∴點M的坐標為(2﹣1,1).
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,張老師說:“是無理數(shù),無理數(shù)就是無限不循環(huán)小數(shù),同學們,你能把的小數(shù)部分全部寫出來嗎?”大家議論紛紛,晶晶同學說:“要把它的小數(shù)部分全部寫出來是非常難的,但我們可以用(﹣1)表示它的小數(shù)部分.接著,張老師出示了一道練習題:
“已知8+=x+y,其中x是一個整數(shù),且0<y<1,請你求出2x+(﹣y)2016的值”.請聰明的你給出正確答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩艘輪船同時從港口O出發(fā),甲輪船以20海里/時的速度向南偏東45°方向航行,乙輪船向南偏西45°方向航行.已知它們離開港口O兩小時后,兩艘輪船相距50海里,求乙輪船平均每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用四舍五入法對數(shù)據(jù)6.21496按括號中的要求分別取近似值,其中正確的是( 。
A. 6.21(精確到0.01) B. 6.214(精確到百分位)
C. 6.21(精確到十分位) D. 6.2149(精確到0.0001)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在新晚報舉辦的“萬人戶外徒步活動”中,為統(tǒng)計參加活動人員的年齡情況,從參加人員中隨機抽取了若干人的年齡作為樣本,進行數(shù)據(jù)統(tǒng)計,制成如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分).
(1)本次活動統(tǒng)計的樣本容量是多少?
(2)求本次活動中70歲以上的人數(shù),并補全條形統(tǒng)計圖;
(3)本次參加活動的總?cè)藬?shù)約為12000人,請你估算參加活動人數(shù)最多的年齡段的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】整理教室時,老師總是先把每一列最前和最后的課桌擺好,然后再依次擺中間的課桌,一會兒一列課桌便整整齊齊擺在了一條線上,這其中蘊含的數(shù)學道理是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從A地到B地需修一條公路,該工程由甲、乙兩隊共同完成,甲、乙兩隊分別從A地、B地同時開始修路,設(shè)修路的時間為x(天),未修的路程為y(米),圖中的折線表示甲乙兩個工程隊從開始施工到工程結(jié)束的過程中y與x之間的函數(shù)關(guān)系.已知在修路過程中,甲工程隊因設(shè)備升級而停工5天,則設(shè)備升級后甲工程隊每天修路比原來多 米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題引入:
(1)如圖1,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC= (用α表示);
如圖2,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,則∠BOC= (用α表示);
拓展研究:
(2)如圖3,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,猜想∠BOC= (用α表示),并說明理由;
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請猜想∠BOC= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com