【題目】如圖,ABC,AC=BC=10,C=90°,點(diǎn)OAC邊上,CO=2,點(diǎn)PBC邊上,連接OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,使得點(diǎn)P落在AB邊上的點(diǎn)D,CP的長(zhǎng)是_________

【答案】6

【解析】

過(guò)點(diǎn)DDEACE,利用AAS證明△DEO≌△OCP,再根據(jù)全等三角形及等腰直角直角三角形的性質(zhì)求解.

解:如圖,過(guò)點(diǎn)DDEACE,

則∠DOE+COP=90°,∠DOE+ODE=90°,
∴∠ODE=COP
在△DEO和△OCP中,,

∴△DEO≌△OCPAAS),
DE=OC=2,CP=OE
∵在等腰RtABC中,∠A=45°DEAC,
AE=DE=2
CP=OE=AC-OC-AE=10-2-2=6,

故答案是:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC12cm,BC16cm,AB20cm,∠CAB的角平分線ADBC于點(diǎn)D

1)根據(jù)題意將圖形補(bǔ)畫(huà)完整(要求:尺規(guī)作圖保留作圖痕跡,不寫(xiě)作法);

2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中考低于測(cè)試前,某區(qū)教育局為了了解選報(bào)引體向上的九年級(jí)男生的成績(jī)情況,隨機(jī)抽查了本區(qū)部分選報(bào)引體向上項(xiàng)目的九年級(jí)男生的成績(jī),并將測(cè)試得到的成績(jī)繪成了下面兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中的信息,解答下列問(wèn)題:

Ⅰ)寫(xiě)出扇形圖中a=  %,本次抽測(cè)中,成績(jī)?yōu)?/span>6個(gè)的學(xué)生有  名.

Ⅱ)求這次抽測(cè)中,測(cè)試成績(jī)的平均數(shù),眾數(shù)和中位數(shù);

Ⅲ)該區(qū)體育中考選報(bào)引體向上的男生共有1800人,如果體育中考引體向上達(dá)6個(gè)以上(含6個(gè))得滿分,請(qǐng)你估計(jì)該區(qū)體育中考選報(bào)引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,防洪大堤的橫截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE與水平寬度BE的比),AB=20米,BC=30米,身高為1.7米的小明(AM=1.7米)站在大堤A點(diǎn)(M,A,E三點(diǎn)在同一條直線上),測(cè)得電線桿頂端D的仰角∠a=20°.

(1)求背水坡AB的坡角;

(2)求電線桿CD的高度.(結(jié)果精確到個(gè)位,參考數(shù)據(jù)sin20°0.3,cos20°0.9,tan20°0.4,1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,C=90°,按以下步驟:①分別以A.B為圓心,以大于AB的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)MN;②作直線MNBC于點(diǎn)D. AC=1.5,B=15°.BD等于( )

A.1.5B.2C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是等邊內(nèi)一點(diǎn)繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),連接已知

求證:是等邊三角形;

當(dāng)時(shí),試判斷的形狀,并說(shuō)明理由;

探究:當(dāng)為多少度時(shí),是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖ABC,ABC=45°,AB=BC,CDABD,BE平分∠ABC,且BEACE,與CD相交于點(diǎn)F.HBC邊的中點(diǎn),連接DHBE相交于點(diǎn)G,

(1)求證BF=AC

(2)求證CE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在△ABC,A=m°,ABC和∠ACD的平分線交于點(diǎn)A1得∠A1,A1BC和∠A1CD的平分線交于點(diǎn)A2,得∠A2A2 017BC和∠A2 017CD的平分線交于點(diǎn)A2 018,則∠A2 018_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù)且abc≠0)與直線l都經(jīng)過(guò)y軸上的同一點(diǎn),且拋物線的頂點(diǎn)在直線l上,則稱(chēng)拋物線L與直線l具有一帶一路關(guān)系,并且將直線1叫做拋物線L路線,拋物線L叫做直線l帶線

(1)若路線”l的表達(dá)式為y=2x﹣4,它的帶線”L的頂點(diǎn)的橫坐標(biāo)為﹣1,求帶線”L的表達(dá)式;

(2)如果拋物線y=2x2﹣4x+1與直線y=nx+1具有一帶一路關(guān)系,如圖,設(shè)拋物線與x軸的一個(gè)交點(diǎn)為A,與y軸交于點(diǎn)B,其頂點(diǎn)為C.

△ABC的面積;

y軸上是否存在一點(diǎn)P,使SPBC=SABC,若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案