如圖,將三個(gè)同樣的正方形的一個(gè)頂點(diǎn)重合放置,那么的度數(shù)為______
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為15的正方形OEFP置于直角坐標(biāo)系中,OE、OP分別與x軸、y軸的正半軸重合,邊長(zhǎng)為2
3
的等邊△ABC的邊BC垂直于x軸,△ABC從點(diǎn)A與點(diǎn)O重合的位置開始,以每秒1個(gè)單位長(zhǎng)的速度先向右平移,當(dāng)BC邊與直線EF重合時(shí),繼續(xù)以同樣的速度向上平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PAC的面積為y.
(1)當(dāng)x為何值時(shí),P、A、B三點(diǎn)在同一直線上,求出此時(shí)A點(diǎn)的坐標(biāo);
(2)在△ABC向右平移的過(guò)程中,當(dāng)x分別取何值時(shí),y取最大值和最小值?最大值和最小值分別是多少?
(3)在△ABC移動(dòng)的過(guò)程中,請(qǐng)你就△PAC面積大小的變化情況提出一個(gè)綜合論斷.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為8
3
的正方形OEFP置于直角坐標(biāo)系中,OE、OP分別與x軸、y軸的正半軸重合.
(1)直接寫出正方形OEFP的周長(zhǎng);
(2)等邊△ABC的邊長(zhǎng)為2
3
,頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,BC⊥x軸于點(diǎn)D,△ABC從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)的速度先向右平移,當(dāng)BC邊與直線EF重合時(shí),繼續(xù)以同樣的速度向上平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PAC的面積為y.①在△ABC向右平移的過(guò)程中,求y與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;②當(dāng)t為何值時(shí),P、A、B三點(diǎn)在同一直線上(精確到0.1秒).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,將邊長(zhǎng)為8數(shù)學(xué)公式的正方形OEFP置于直角坐標(biāo)系中,OE、OP分別與x軸、y軸的正半軸重合.
(1)直接寫出正方形OEFP的周長(zhǎng);
(2)等邊△ABC的邊長(zhǎng)為數(shù)學(xué)公式,頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,BC⊥x軸于點(diǎn)D,△ABC從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)的速度先向右平移,當(dāng)BC邊與直線EF重合時(shí),繼續(xù)以同樣的速度向上平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PAC的面積為y.①在△ABC向右平移的過(guò)程中,求y與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;②當(dāng)t為何值時(shí),P、A、B三點(diǎn)在同一直線上(精確到0.1秒).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省泉州市永春縣九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,將邊長(zhǎng)為8的正方形OEFP置于直角坐標(biāo)系中,OE、OP分別與x軸、y軸的正半軸重合.
(1)直接寫出正方形OEFP的周長(zhǎng);
(2)等邊△ABC的邊長(zhǎng)為,頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,BC⊥x軸于點(diǎn)D,△ABC從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)的速度先向右平移,當(dāng)BC邊與直線EF重合時(shí),繼續(xù)以同樣的速度向上平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PAC的面積為y.①在△ABC向右平移的過(guò)程中,求y與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;②當(dāng)t為何值時(shí),P、A、B三點(diǎn)在同一直線上(精確到0.1秒).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省揚(yáng)州市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,將邊長(zhǎng)為15的正方形OEFP置于直角坐標(biāo)系中,OE、OP分別與x軸、y軸的正半軸重合,邊長(zhǎng)為的等邊△ABC的邊BC垂直于x軸,△ABC從點(diǎn)A與點(diǎn)O重合的位置開始,以每秒1個(gè)單位長(zhǎng)的速度先向右平移,當(dāng)BC邊與直線EF重合時(shí),繼續(xù)以同樣的速度向上平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PAC的面積為y.
(1)當(dāng)x為何值時(shí),P、A、B三點(diǎn)在同一直線上,求出此時(shí)A點(diǎn)的坐標(biāo);
(2)在△ABC向右平移的過(guò)程中,當(dāng)x分別取何值時(shí),y取最大值和最小值?最大值和最小值分別是多少?
(3)在△ABC移動(dòng)的過(guò)程中,請(qǐng)你就△PAC面積大小的變化情況提出一個(gè)綜合論斷.

查看答案和解析>>

同步練習(xí)冊(cè)答案