【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC=10米,又測(cè)得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(,結(jié)果精確到個(gè)位).
【答案】旗桿AB的高度約為16米.
【解析】
延長(zhǎng)BD,AC交于點(diǎn)E,過點(diǎn)D作DF⊥AE于點(diǎn)F.構(gòu)建直角△DEF和直角△CDF.通過解這兩個(gè)直角三角形求得相關(guān)線段的長(zhǎng)度即可.
解:延長(zhǎng)BD,AC交于點(diǎn)E,過點(diǎn)D作DF⊥AE于點(diǎn)F.
∵i=tan∠DCF=,
∴∠DCF=30°.
又∵∠DAC=15°,
∴∠ADC=15°.
∴CD=AC=10.
在Rt△DCF中,DF=CDsin30°=10×=5(米),
CF=CDcos30°=10×,∠CDF=60°.
∴∠BDF=45°+15°+60°=120°,
∴∠E=120°﹣90°=30°,
在Rt△DFE中,EF=,
∴AE=10++=+10.
在Rt△BAE中,BA=AEtanE=(+10)×=10+≈16(米).
答:旗桿AB的高度約為16米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會(huì).某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場(chǎng)調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤(rùn)不低于5元.
(1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)設(shè)該公司日銷售利潤(rùn)為P元,求每天的最大銷售利潤(rùn)是多少元?
(3)在試銷售過程中,受國(guó)家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國(guó)家給予公司補(bǔ)貼m(m≤40)元.在獲得國(guó)家每件m元補(bǔ)貼后,公司的日銷售利潤(rùn)隨日銷售量的增大而增大,則m的取值范圍是 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副含和角的三角板和疊合在一起,邊與重合,(如圖1),點(diǎn)為邊的中點(diǎn),邊與相交于點(diǎn),現(xiàn)將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(如圖2),在從到的變化過程中,點(diǎn)相應(yīng)移動(dòng)的路徑長(zhǎng)共為____.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,CD≠AB,點(diǎn)F在BC上,連DF與AB的延長(zhǎng)線交于點(diǎn)G.
(1)求證:CFFG=DFBF;
(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時(shí),過F作EF∥CD交AD于點(diǎn)E,若AB=12,EF=8,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某學(xué)校興趣小組活動(dòng)情況,隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,按A:藝術(shù),B:科技,C:體育,D:其他四個(gè)項(xiàng)目進(jìn)行統(tǒng)計(jì),繪制了兩幅統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問題:
(1)本次接受問卷調(diào)查的共有 人:在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;
(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對(duì)應(yīng)扇形圓心角為 度;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若全校有2000人,請(qǐng)你估算一下全校喜歡藝術(shù)類學(xué)生的人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖ABCD是一個(gè)矩形桌子,一小球從P撞擊到Q,反射到R,又從R反射到S,從S反射回原處P,入射角與反射角相等(例如∠PQA=∠RQB等),已知AB=9,BC=12,BR=4.則小球所走的路徑的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。
A. 當(dāng)m=﹣3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,)
B. 當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于
C. 當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過同一個(gè)點(diǎn)
D. 當(dāng)m<0時(shí),函數(shù)在x>時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x+3分別相交于A,B兩點(diǎn),且此拋物線與x軸的一個(gè)交點(diǎn)為C,連接AC,BC.已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對(duì)稱軸l上找一點(diǎn)M,使|MB﹣MC|的值最大,并求出這個(gè)最大值;
(3)點(diǎn)P為y軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)P作PQ⊥PA交y軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,點(diǎn)是的中點(diǎn),將繞點(diǎn)旋轉(zhuǎn)至的位置,使,其中點(diǎn)的運(yùn)動(dòng)路徑為弧,連接,則圖中陰影部分的面積為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com