閱讀與理解:如圖,CDE是直線,∠1=120°,∠A=60°,直線AB與CD平行嗎?請(qǐng)閱讀以下說(shuō)明過(guò)程,并補(bǔ)全所空內(nèi)容。
解:AB∥CD
∵CDE是一條直線,
∴∠1+∠2=_____°,
又∵∠1=120°,
∴∠______=______°,
又∵∠A=60°,
∴∠2=∠A,
∴AB∥CD,理由是________。
180°;2;60°;內(nèi)錯(cuò)角相等,兩直線平行
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

22、閱讀與理解:
圖1是邊長(zhǎng)分別為a和b(a>b)的兩個(gè)等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;
(2)操作:若將圖1中的△C′DE,繞點(diǎn)C按順時(shí)針?lè)较蛉我庑D(zhuǎn)一個(gè)角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;
猜想與發(fā)現(xiàn):
根據(jù)上面的操作過(guò)程,請(qǐng)你猜想當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最大是多少?當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最小是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀與理解:
三角形的中線的性質(zhì):三角形的中線等分三角形的面積,
即如圖1,AD是△ABC中BC邊上的中線,
S△ABD=S△ACD=
1
2
S△ABC

理由:∵BD=CD,∴S△ABD=
1
2
BD×AH=
1
2
CD×AH=S△ACD
=
1
2
S△ABC
,
即:等底同高的三角形面積相等.
操作與探索
在如圖2至圖4中,△ABC的面積為a.
(1)如圖2,延長(zhǎng)△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
 
(用含a的代數(shù)式表示);
(2)如圖3,延長(zhǎng)△ABC的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
 
(用含a的代數(shù)式表示),并寫(xiě)出理由;
(3)在圖3的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖4).若陰影部分的面積為S3,則S3=
 
(用含a的代數(shù)式表示).
精英家教網(wǎng)
拓展與應(yīng)用
如圖5,已知四邊形ABCD的面積是a,E、F、G、H分別是AB、BC、CD的中點(diǎn),求圖中陰影部分的面積?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),易證△ABP∽△PCD,從而得到BP•PC=AB•CD,解答下列問(wèn)題.
(1)模型探究:如圖2,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:BP•PC=AB•CD;
(2)拓展應(yīng)用:如圖3,在四邊形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于點(diǎn)O,以O(shè)為頂點(diǎn),以BC所在直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)P為線段OC上一動(dòng)點(diǎn)(不與端點(diǎn)O、C重合)
(i)當(dāng)∠APD=60°時(shí),求點(diǎn)P的坐標(biāo);
(ii)過(guò)點(diǎn)P作PE⊥PD,交y軸于點(diǎn)E,設(shè)PO=x,OE=y,求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•臺(tái)州模擬)閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),易證△ABP∽△PCD,從而得到BP•PC=AB•CD,解答下列問(wèn)題.
(1)模型探究:如圖2,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),結(jié)論BP•PC=AB•CD仍成立嗎?試說(shuō)明理由;
(2)拓展應(yīng)用:如圖3,M為AB的中點(diǎn),AE與BD交于點(diǎn)C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=4
2
,AF=3,求FG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案