在有理數(shù)范圍內(nèi)因式分解:
(1)16(6x-1)(2x-1)(3x+1)(x-1)+25=______.
(2)(6x-1)(2x-1)(3x-1)(x-1)+x2=______.
(3)(6x-1)(4x-1)(3x-1)(x-1)+9x4=______.
解:(1)16(6x-1)(2x-1)(3x+1)(x-1)+25,
=[(6x-1)(4x-2)][(6x+2)(4x-4)]+25,
=(24x2-16x+2)(24x2-16x-8)+25,
=(24x2-16x)2-6(24x2-16x)-16+25,
=(24x2-16x)2-6(24x2-16x)+9,
=(24x2-16x-3)2;
(2)(6x-1)(2x-1)(3x-1)(x-1)+x2,
=[(6x-1)(x-1)][(2x-1)(3x-1)]+x2,
=(6x2-7x+1)(6x2-5x+1)+x2,
=(6x2-6x+1-x)(6x2-6x+1+x)+x2,
=(6x2-6x+1)2-x2+x2,
=(6x2-6x+1)2;
(3)(6x-1)(4x-1)(3x-1)(x-1)+9x4,
=[(6x-1)(x-1)][(4x-1)(3x-1)]+9x4,
=(6x2-7x+1)(12x2-7x+1)+9x4,
令t=6x2-7x+1,則12x2-7x+1=t+6x2,
∴原式=t(t+6x2)+9x4,
=t2+6•t•x2+9x4,
=(t+3x2)2,
=(6x2-7x+1+3x2)2,
=(9x2-7x+1)2.
分析:(1)把16分解因數(shù)為2×2×4,分別乘入第二、三、四項(xiàng),然后再第一二項(xiàng)相乘,第三四項(xiàng)相乘,利用整體思想根據(jù)多項(xiàng)式的乘法進(jìn)行計(jì)算即可求解;
(2)先利用多項(xiàng)式的乘法運(yùn)算法則把第一、四項(xiàng)相乘,第二、三項(xiàng)相乘,然后再整理成(6x2-6x+1-x)(6x2-6x+1+x)的形式,根據(jù)平方差公式計(jì)算后即可消掉x2項(xiàng),從而得解;
(3)先利用多項(xiàng)式的乘法運(yùn)算法則把第一、四項(xiàng)相乘,第二、三項(xiàng)相乘,再利用換元法,令t=6x2-7x+1,整理成關(guān)于t與x2的形式,然后根據(jù)完全平方公式分解因式,最后再把t換成6x2-7x+1即可得解.
點(diǎn)評(píng):本題考查了因式分解的應(yīng)用,都是利用了整體思想或者是換元法進(jìn)行求解,根據(jù)系數(shù)的特點(diǎn)分組利用多項(xiàng)式的乘法整理成新的多項(xiàng)式的乘法運(yùn)算是解題的關(guān)鍵,難度較大,計(jì)算時(shí)要認(rèn)真仔細(xì).