【題目】在△ABC中,∠ACB=90°,經(jīng)過(guò)點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P.

(1)如圖①,當(dāng)點(diǎn)OAC上時(shí),試說(shuō)明2ACP=B;

(2)如圖②,AC=8,BC=6,當(dāng)點(diǎn)O在△ABC外部時(shí),求CP長(zhǎng)的取值范圍.

【答案】(1)2ACP=B;(2)當(dāng)點(diǎn)O在△ABC外時(shí),CP8.

【解析】分析:(1)根據(jù)BCAC垂直得到BC與圓相切,再由AB相切于點(diǎn)P,利用切線長(zhǎng)定理得到,利用等邊對(duì)等角得到一對(duì)角相等,再由等量代換即可得證;
(2)在中,利用勾股定理求出AB的長(zhǎng),根據(jù)ACBC垂直,得到BC相切,連接連接OPAO,再由AB相切,得到OP垂直于AB,設(shè)OC=x,則OP=x,OB=BCOC=6x,求出PA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出BO的長(zhǎng),根據(jù)AC=AP,OC=OP得到AO垂直平分CP,根據(jù)面積法求出CP的長(zhǎng),由題意可知,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),CP最長(zhǎng),即可確定出CP的范圍.

詳解:(1)當(dāng)點(diǎn)OAC上時(shí),OC的半徑,

BCOC,且點(diǎn)C上,

BC相切,

AB邊相切于點(diǎn)P,

BC=BP,

2ACP=B;

(2)在△ABC,

如圖,當(dāng)點(diǎn)OCB上時(shí),OC的半徑,

ACOC,且點(diǎn)C,

AC相切,

連接OP、AO

AB邊相切于點(diǎn)P,

OPAB

設(shè)OC=x,則OP=x,OB=BCOC=6x,

AC=AP,

BP=ABAP=108=2,

在△OPA,

根據(jù)勾股定理得:,

解得:

在△ACO,

AC=APOC=OP,

AO垂直平分CP

∴根據(jù)面積法得: 則符合條件的CP長(zhǎng)大于

由題意可知,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),CP最長(zhǎng),

綜上,當(dāng)點(diǎn)O在△ABC外時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B兩地相距50米,小烏龜從A地出發(fā)前往B地,第一次它前進(jìn)1米,第二次它后退2米,第三次再前進(jìn)3米,第四次又向后退4,按此規(guī)律行進(jìn),如果A地在數(shù)軸上表示的數(shù)為﹣16

1)求出B地在數(shù)軸上表示的數(shù);

2)若B地在原點(diǎn)的右側(cè),經(jīng)過(guò)第七次行進(jìn)后小烏龜?shù)竭_(dá)點(diǎn)P,第八次行進(jìn)后到達(dá)點(diǎn)Q,點(diǎn)P、點(diǎn)QA地的距離相等嗎?說(shuō)明理由?

3)若B地在原點(diǎn)的右側(cè),那么經(jīng)過(guò)100次行進(jìn)后,小烏龜?shù)竭_(dá)的點(diǎn)與點(diǎn)B之間的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上的一點(diǎn),且BC=EC,CFBEAB于點(diǎn)F,PEB延長(zhǎng)線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;CF平分∠DCB;BC=FB;PF=PC.其中正確的有_____.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,關(guān)于x的二次函數(shù)y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0),點(diǎn)C(0,3),點(diǎn)D為二次函數(shù)的頂點(diǎn),DE為二次函數(shù)的對(duì)稱軸,Ex軸上.

(1)求拋物線的解析式;

(2)DE上是否存在點(diǎn)PAD的距離與到x軸的距離相等?若存在求出點(diǎn)P,若不存在請(qǐng)說(shuō)明理由;

(3)如圖2,DE的左側(cè)拋物線上是否存在點(diǎn)F,使2SFBC=3SEBC?若存在求出點(diǎn)F的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC繞頂點(diǎn)C旋轉(zhuǎn)得到A′B′C,且點(diǎn)B剛好落在A′B′上.若∠A=25°,∠BCA′=45°,則∠A′BA等于( )

A. 40°B. 35°C. 30°D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)OOF,OD分別是AOE,BOE的平分線.

(1)寫(xiě)出DOE的補(bǔ)角;

(2)BOE62°,求AODEOF的度數(shù);

(3)試問(wèn)射線ODOF之間有什么特殊的位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?

(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫(huà)出樹(shù)狀圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CE與AF的數(shù)量關(guān)系,并加以證明;

(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);

(3)若BC= 4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的一邊DF與邊DM重合時(shí)(如圖2),若OF=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCDMN分別在AB、CD上且AM=CN,MNAC交于點(diǎn)O,連接BO若∠DAC=62°,則∠OBC的度數(shù)為( 。

A. 28°B. 52°C. 62°D. 72°

查看答案和解析>>

同步練習(xí)冊(cè)答案