【題目】已知∠BOP與OP上點(diǎn)C,點(diǎn)A(在A的左側(cè)),嘉嘉進(jìn)行如下作圖:
①以點(diǎn)O為圓心,OC為半徑畫(huà)弧,交OB于點(diǎn)D,連接CD
②以點(diǎn)A為圓心,OC為半徑畫(huà)弧MN,交AP于點(diǎn)M
③以點(diǎn)M為圓心,CD為半徑畫(huà)弧,交MN于點(diǎn)E,連接ME,作射線(xiàn)AE
如圖所示,則下列結(jié)論不成立的是( )
A. CD∥EM B. AE∥OB C. ∠ODC=∠AEM D. ∠OAE=∠BDC
【答案】D
【解析】
由作法得∠MAE=∠COD,理由平行線(xiàn)的判定方法得到AE∥OB,再證明△AEM≌△OCD得到∠AME=∠OCD=∠ODC=∠AEM,從而可判定CD∥ME.
由作法得∠MAE=∠COD,
∴AE∥OB,
∵AE=AM=OC=OD,ME=CD,
∴△AEM≌△OCD(SSS),
∴∠AME=∠OCD=∠ODC=∠AEM,
∴CD∥ME.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖1,△ABC中,BA=BC,D是平面內(nèi)不與A、B、C重合的任意一點(diǎn),∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當(dāng)點(diǎn)D是△ABC的外接圓圓心時(shí),請(qǐng)判斷四邊形BDCE的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,某超市從一樓到二樓有一自動(dòng)扶梯,圖②是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為1∶2.4,AB的長(zhǎng)度是13米,MN是二樓樓頂,MN∥PQ , C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN , 在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)( )
A.10.8米
B.8.9米
C.8.0米
D.5.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)修建一條總長(zhǎng)為1860米的公路,在使用舊設(shè)備施工17天后,為盡快完成任務(wù),工程隊(duì)引進(jìn)了新設(shè)備,從而將工作效率提高了50%,結(jié)果比原計(jì)劃提前15天完成任務(wù).
(1)工程隊(duì)在使用新設(shè)備后每天能修路多少米?
(2)在使用舊設(shè)備和新設(shè)備工作效率不變的情況下,工程隊(duì)計(jì)劃使用舊設(shè)備m天,使用新設(shè)備n(16≤n≤26)天修建一條總長(zhǎng)為1500米的公路,使用舊設(shè)備一天需花費(fèi)16000元,使用新設(shè)備一天需花費(fèi)25000元,當(dāng)m、n分別為何值時(shí),修建這條公路的總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=x2+(m+1)x+m﹣1與x軸交于A(yíng),B兩點(diǎn),頂點(diǎn)為C,則△ABC面積的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,3).
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1 , 并寫(xiě)出A1點(diǎn)的坐標(biāo)及sin∠B1A1C1的值;
以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫(huà)出 將△ABC放大后的△A2B2C2 , 并寫(xiě)出A2點(diǎn)的坐標(biāo);
(2)若點(diǎn)D(a,b)在線(xiàn)段AB上,直接寫(xiě)出經(jīng)過(guò)(2)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代換),
∴DB∥EC( ),
∴∠DBC+∠C=1800(兩直線(xiàn)平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代換),
∴DF∥AC( ,兩直線(xiàn)平行),
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知C是線(xiàn)段AB垂直平分線(xiàn)m上一動(dòng)點(diǎn),連接AC,以AC為邊作等邊三角形ACD,點(diǎn)D在直線(xiàn)AB的上方,連接DB與直線(xiàn)m交于點(diǎn)E,連接BC,AE.
(1)如圖1,點(diǎn)C在線(xiàn)段AB上.
①根據(jù)題意補(bǔ)全圖1;
②求證:∠EAC=∠EDC;
(2)如圖2,點(diǎn)C在直線(xiàn)AB的上方, 0°<∠CAB<30°,用等式表示線(xiàn)段BE,CE,DE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com