已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x-101234
y1052125
(1)求該二次函數(shù)的關(guān)系式;
(2)當x為何值時,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+1,y2)兩點都在該函數(shù)的圖象上,試比較y1與y2的大小.
(1)根據(jù)題意,
當x=0時,y=5;
當x=1時,y=2;
5=c
2=1+b+c
,解得
b=-4
c=5

∴該二次函數(shù)關(guān)系式為y=x2-4x+5;

(2)∵y=x2-4x+5=(x-2)2+1,
∴當x=2時,y有最小值,最小值是1,

(3)∵A(m,y1),B(m+1,y2)兩點都在函數(shù)y=x2-4x+5的圖象上,
所以,y1=m2-4m+5,
y2=(m+1)2-4(m+1)+5=m2-2m+2,
y2-y1=(m2-2m+2)-(m2-4m+5)=2m-3,
∴①當2m-3<0,即m<
3
2
時,y1>y2;
②當2m-3=0,即m=
3
2
時,y1=y2;
③當2m-3>0,即m>
3
2
時,y1<y2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(0,1),B(2,0),O(0,0),將此三角板繞原點O逆時針旋轉(zhuǎn)90°,得到△A′B′O.
(1)一拋物線經(jīng)過點A′、B′、B,求該拋物線的解析式;
(2)設(shè)點P是在第一象限內(nèi)拋物線上的一動點,是否存在點P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標;若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2-2ax+c與y軸交于C點,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且|OC|=3|OA|
(1)求拋物線的函數(shù)表達式;
(2)直接寫出直線BC的函數(shù)表達式;
(3)如圖1,D為y軸的負半軸上的一點,且OD=2,以O(shè)D為邊作正方形ODEF.將正方形ODEF以每秒1個單位的速度沿x軸的正方向移動,在運動過程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運動的時間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點P(1,k)在直線BC上,點M在x軸上,點N在拋物線上,是否存在以A、M、N、P為頂點的平行四邊形?若存在,請直接寫出M點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:已知拋物線y1=-x2-2x+8的圖象交x軸于點A,B兩點,與y軸的正半軸交于點C.拋物線y2經(jīng)過B、C兩點且對稱軸為直線x=3.
(1)確定A、B、C三點的坐標;
(2)求拋物線y2的解析式;
(3)若過點(0,3)且平行于x軸的直線與拋物線y2交于M、N兩點,以MN為一邊,拋物線y2上任意一點P(x,y)為頂點作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點縱坐標y的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖長為2的線段PQ在x的正半軸上,從P、Q作x軸的垂線與拋物線y=x2交于點P′、Q′.
(1)已知P的坐標為(k,0),求直線OP′的函數(shù)解析式;
(2)若直線OP′把梯形P′PQQ′的面積二等分,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

利民商店經(jīng)銷甲、乙兩種商品.現(xiàn)有如下信息:

請根據(jù)以上信息,解答下列問題:
(1)甲、乙兩種商品的進貨單價各多少元?
(2)該商店平均每天賣出甲商品500件和乙商品300件.經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價分別每降0.1元,這兩種商品每天可各多銷售100件.為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元.在不考慮其他因素的條件下,當m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知一動圓的圓心P在拋物線y=
1
2
x2-3x+3上運動.若⊙P半徑為1,點P的坐標為(m,n),當⊙P與x軸相交時,點P的橫坐標m的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場將進價為1800元的電冰箱以每臺2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降價50元,平均每天就能多售出4臺.
(1)設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤為y元,求y與x之間的函數(shù)關(guān)系式(不要求寫自變量的取值范圍).
(2)商場想在這種冰箱的銷售中每天盈利8000元,同時又要使顧客得到實惠,每臺冰箱應(yīng)降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,利用兩面夾角為135°且足夠長的墻,圍成梯形圍欄ABCD,∠C=90°,新建墻BCD總長為15m,則當CD=______m時,梯形圍欄的面積最大.

查看答案和解析>>

同步練習冊答案