(2010•朝陽區(qū)二模)如圖,在菱形ABCD中,對角線AC、BD相交于點O,且AC=12,BD=16,E為AD的中點,點P在BD上移動,若△POE為等腰三角形,則所有符合條件的點P共有    個.
【答案】分析:首先可以確定的P點有3個:①以O(shè)為圓心OE為半徑作圓,與BD交于兩點,都符合P點的要求;②連接OE,OE的中垂線交BD于一點,此點也符合P點要求;
然后連接OE,過E作OD的垂線EF,易得EF是△AOD的中位線,結(jié)合菱形的性質(zhì)可證得EF垂直平分OD,因此OE=DE,即D點也符合P點的要求,所以共有4個點P.
解答:解:如圖①,首先可以確定的P點有三個:
一、以O(shè)為圓心OE為半徑作圓,⊙O交BD于P1、P2;
二、連接OE,作OE的垂直平分線,交BD于P3;
如圖②,連接OE,過E作EF⊥OD于F;
由于四邊形ABCD是菱形,故AO⊥OD,即EF∥AO;
又∵E是AD中點,
∴F是OD的中點,
∴EF是△AOD的中位線,
即EF垂直平分OD,
∴OE=DE,故D點符合P點的要求;
綜上所述,符合條件的P點有4個.

故答案為4.
點評:此題主要考查了菱形的性質(zhì)以及等腰三角形的判定,由于等腰三角形的腰和底不確定,一定要分類討論,以免漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖,在邊長在2的正方形ABCD中,點F在x軸上一點,CF=1,過點B作BF的垂線,交y軸于點E;
(1)求過點E、B、F的拋物線的解析式;
(2)將∠EBF繞點B順時針旋轉(zhuǎn),角的一邊交y軸正半軸于點M,另一邊交x軸于點N,設(shè)BM與(1)中拋物線的另一交點為G,當點G的橫坐標為時,EM與NO有怎樣的數(shù)量關(guān)系?請說明你的結(jié)論;
(3)點P在(1)中的拋物線上,且PE與y軸所成銳角的正切值為,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過點A.
(1)求反比例函數(shù)的解析式;
(2)若點B在y=(x>0)的圖象上,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年北京市中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2010•朝陽區(qū)二模)全球可被人類利用的淡水總量僅占總水量的0.00003,因此珍惜水,保護水是我們每一位公民義不容辭的責(zé)任,其中數(shù)字0.00003用科學(xué)記數(shù)法表示為( )
A.3×10-4
B.3×10-5
C.0.3×10-4
D.0.3×10-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖1,四邊形ABCD,將頂點為A的角繞著頂點A順時針旋轉(zhuǎn),角的一條邊與DC的延長線交于點F,角的另一邊與CB的延長線交于點E,連接EF.
(1)如果四邊形ABCD為正方形,當∠EAF=45°時,有EF=DF-BE.請你思考如何證明這個結(jié)論(只需思考,不必寫出證明過程);
(2)如圖2,如果在四邊形ABCD中,AB=AD,∠ABC=∠ADC=90°,當∠EAF=∠BAD時,EF與DF、BE之間有怎樣的數(shù)量關(guān)系?請寫出它們之間的關(guān)系式(只需寫出結(jié)論);
(3)如圖3,如果在四邊形ABCD中,AB=AD,∠ABC與∠ADC互補,當∠EAF=∠BAD時,EF與DF、BE之間有怎樣的數(shù)學(xué)關(guān)系?請寫出它們之間的關(guān)系式并給予證明;
(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周長(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖,平行四邊形ABCD中,AD=8,CD=4,∠D=60°.點P與點Q是平行四邊形ABCD邊上的動點,點P以每秒1個單位長度的速度,從點C運動到點D,點Q以每秒2個單位長度的速度從點A→點B→點C運動,當其中一個點到達終點時,另一個點隨之停止運動.點P與點Q同時出發(fā),設(shè)運動時間為t,△CPQ的面積為S.
(1)求S關(guān)于t的函數(shù)關(guān)系式;
(2)求出S的最大值;
(3)t為何值時,以△CPQ的一邊所在直線為軸翻折,翻折前后的兩個三角形所組成的四邊形是菱形?

查看答案和解析>>

同步練習(xí)冊答案