如圖,正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上且AE=EF=FA,下列結(jié)論:① ②CE=CF ③∠AEB=750 ④BE+DF=EF  ⑤其中正確的是             (只填寫序號(hào))
①②③⑤
∵AB=AD,AE=AF=EF,
∴△ABE≌△ADF(HL),△AEF為等邊三角形,
∴BE=DF,又BC=CD,
∴CE=CF,
∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,
∴∠AEB=90°﹣∠BAE=75°,
∴①②③正確,
在AD上取一點(diǎn)G,連接FG,使AG=GF,
則∠DAF=∠GFA=15°,
∴∠DGF=2∠DAF=30°,
設(shè)DF=1,則AG=GF=2,DG=
∴AD=CD=2+,CF=CE=CD﹣DF=1+
∴EF=CF=+,而BE+DF=2,
∴④錯(cuò)誤,
⑤∵ABE+SADF=2×AD×DF=2+,
SCEF=CE×CF==2+
∴⑤正確.
故答案為:①②③⑤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在2ABCD中,對角線BD、AC相交于點(diǎn)O,BE=DF,過點(diǎn)O作線段GH交AD于點(diǎn)G,交BC于點(diǎn)H,順次連接EH、HF、FG、GE,求證:四邊形EHFG是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,D是AB的中點(diǎn),E是CD的中點(diǎn),過點(diǎn)C作CF∥AB交AE的延長線于點(diǎn)F,連結(jié)BF。
小題1:求證:△ADE≌△FCE;
小題2:若AC=BC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知點(diǎn)G是梯形的中位線上任意一點(diǎn),若梯形的面積為20cm2,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD是由四個(gè)邊長為1的正六邊形所圍住,則四邊形ABCD的面積是(     )
A.1B.2C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,P、Q分別是AD、AC的中點(diǎn),如果 PQ=3,那么菱形ABCD的周長是(  )

A.6       B.18     C.24       D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

菱形ABCD中,AB=2,∠ABC=60°,順次連接菱形ABCD各邊的中點(diǎn)所得四邊形的面積為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形ABCD的周長為36cm,若AB:BC=1:5,則AB="____cm" BC=___cm;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在□ABCD中,EAD邊上的中點(diǎn).BE平分∠ABC,AB = 2,則□ABCD的周長是_________________.

查看答案和解析>>

同步練習(xí)冊答案