【題目】如圖,四邊形內(nèi)接于,對(duì)角線是的直徑,過點(diǎn)作的垂線交的延長(zhǎng)線于點(diǎn),為的中點(diǎn),連接,,與交于點(diǎn).
(1)求證:是的切線;
(2)若,求的值;
(3)若,,求的長(zhǎng).
【答案】(1)見解析;(2)2;(3)4
【解析】
(1)連接OD,證明,由F為CE中點(diǎn),得DF=CF,結(jié)合OD=OC,證明,可得DF為的切線;
(2)證明△ACE∽△ADC,得AC2=AD·AE,可設(shè)DE=x(或DE=1),根據(jù)AC2=AD·AE求出AD,DC,,可得結(jié)果;
(3)過點(diǎn)O作于點(diǎn)G,根據(jù)垂徑定理得BG=GD=m,表示PD=m+PG,PB=m-PG,根據(jù),得,由得OG=PG,可得半徑,即可得到AC.
解:(1)證明:如圖,連接OD.
∵AC是⊙O的直徑,
∴∠ADC=90°.
∴∠EDC=90°.
∵F是EC的中點(diǎn),
∴DF=FC.
∴∠FDC=∠FCD.
∵OD=OC,
∴∠ODC=∠OCD.
∵AC⊥CE,
∴∠OCF=90°.
∴∠ODF=∠ODC+∠FDC=∠OCD+∠FCD=∠OCF=90°,即DF⊥OD.
∴DF是⊙O的切線.
(2)解:∵∠CAE+∠E=90°,∠CAE+∠ACD=90°,
∴∠E=∠ACD.
又∠ACE=∠ADC=90°,
∴△ACE∽△ADC.
∴,即AC2=AD·AE.
解法一:設(shè)DE=x,則AC=x,即(x)2=AD(AD+x).
整理,得AD2+AD·x-20x2=0.
解得AD=4x或AD=-5x(舍去).
∴DC==2x.
∴tan∠ABD=tan∠ACD===2.
解法二:設(shè)DE=1,則AC=,即()2=AD(AD+1).
整理,得AD2+AD-20=0.
解得AD=4或AD=-5(舍去).
∴DC==2.
∴tan∠ABD=tan∠ACD==2.
(3)解:如圖,過點(diǎn)O作于點(diǎn)G.
由垂徑定理,得BG=DG.
設(shè)BG=DG=m,則PD=m+PG,PB=m-PG.
∵,
∴,整理,得,即.
∵∠DPC=45°,
∴OG=PG.
∴OD2=DG2+OG2=m2+PG2=4,即⊙O的半徑為2.
∴AC=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生參加“新冠肺炎”防疫知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),并按照成績(jī)從低到高分成A,B,C,D,E五個(gè)小組,繪制統(tǒng)計(jì)圖如表(未完成),解答下列問題:
(1)樣本容量為 ,頻數(shù)分布直方圖中a= ;
(2)扇形統(tǒng)計(jì)圖中E小組所對(duì)應(yīng)的扇形圓心角為n°,求n的值并補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>80分以上(不含80分)為優(yōu)秀,全校共有3000名學(xué)生,估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長(zhǎng)為的等邊三角形.將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點(diǎn)O.
(1)如圖a,當(dāng)θ=20°時(shí),判斷△ABD與△ACE是否全等?并說明理由;
(2)當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí)(60°<θ<120°),求∠BOE的度數(shù);
(3)在θ從60°到120°的旋轉(zhuǎn)過程中,點(diǎn)O運(yùn)動(dòng)的軌跡長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,BC=12,點(diǎn)D是BC上一點(diǎn),DE∥AC,DF∥AB,則△BED與△DFC的周長(zhǎng)的和為( 。
A. 34B. 32C. 22D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對(duì)稱軸是,且過點(diǎn),有下列結(jié)論:①;②;③;④;⑤.其中正確的結(jié)論是______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在矩形中,,分別是邊,上的點(diǎn),過點(diǎn)作的垂線交于點(diǎn),以為直徑作半圓.
(1)填空:點(diǎn)_____________(填“在”或“不在”)上;當(dāng)時(shí),的值是_____________;
(2)如圖1,在中,當(dāng)時(shí),求證:;
(3)如圖2,當(dāng)的頂點(diǎn)是邊的中點(diǎn)時(shí),請(qǐng)直接寫出三條線段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們的東北方向距離12海里處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏艇以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏隊(duì)出發(fā)到成功攔截捕魚船所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ABC是等腰直角三角形,∠B=90°,點(diǎn)B的坐標(biāo)為(1,2).反比例函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)A,C兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)直接寫出不等式組0<ax+b≤的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com