【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:
①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正確的結(jié)論是
A.①② B.①③ C.①③④ D.①②③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在彈簧限度內(nèi),彈簧掛上物體后彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系如下表:
所掛物體的質(zhì)量/千克 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
彈簧的長度/ | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 | 16 |
(1)彈簧不掛物體時(shí)的長度是多少?
(2)如果用表示彈性限度內(nèi)物體的質(zhì)量,用表示彈簧的長度,寫出與的關(guān)系式.
(3)如果此時(shí)彈簧最大掛重量為25千克,你能預(yù)測當(dāng)掛重為14千克時(shí),彈簧的長度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線與軸、軸分別相交于點(diǎn)和點(diǎn),點(diǎn)在線段上.將沿折疊后,點(diǎn)恰好落在邊上點(diǎn)處.
(1)直接寫出點(diǎn)、點(diǎn)的坐標(biāo):
(2)求的長;
(3)點(diǎn)為平面內(nèi)一動(dòng)點(diǎn),且滿足以、、、為頂點(diǎn)的四邊形為平行四邊形,請直接回答:
①符合要求的點(diǎn)有幾個(gè)?
②寫出一個(gè)符合要求的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是甲、乙兩個(gè)圓柱形水槽的軸截面示意圖,乙槽中有一四柱形鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上).現(xiàn)將甲槽的水勻速注入乙槽,甲、乙兩個(gè)水槽中水的深度y(厘米)與注水時(shí)間x(分鐘)之間的關(guān)系如圖2所示,根據(jù)圖象提供的信息,解答下列問題:
(1)圖2中折線ABC表示 槽中水的深度與注水時(shí)間關(guān)系,線段DE表示 槽中水的深度與注水時(shí)間之間的關(guān)系(以上兩空選填“甲”或“乙”),點(diǎn)B的縱坐標(biāo)表示的實(shí)際意義是 .
(2)注水多長時(shí)間時(shí),甲、乙.兩個(gè)水槽中水的深度相同?
(3)若乙槽底面積為36平方厘米(壁厚不計(jì)),則乙槽中鐵塊的體積為 立方厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,AE⊥BC交點(diǎn)E,連接DE,F(xiàn)為DE上一點(diǎn),且∠AFE=∠B=60°.
(1)求證:△ADF∽△DEC;
(2)若AE=3,AD=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線交于點(diǎn)O,以AD為邊向外作Rt△ADE,∠AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AC的垂直平分線與∠ABC的角平分線交于點(diǎn)D,
(1)如圖1,判斷∠BAD和∠BCD之間的數(shù)量關(guān)系,并說明理由;
(2)如圖2,若∠DAC=60°時(shí),探究線段AB,BC,BD之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,在(2)的條件下,DA和CB的延長線交于點(diǎn)E,點(diǎn)F是CD上一點(diǎn)且DF=AE,連接AF交BD于點(diǎn)G,若CE=9,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)甲、乙兩種產(chǎn)品共2500噸,每生產(chǎn)1噸甲產(chǎn)品可獲得利潤0.3萬元,每生產(chǎn)1噸乙產(chǎn)品可獲得利潤0.4萬元.設(shè)該工廠生產(chǎn)了甲產(chǎn)品x(噸),生產(chǎn)甲、乙兩種產(chǎn)品獲得的總利潤為y(萬元).
(1)求y與x之間的函數(shù)表達(dá)式;
(2)若每生產(chǎn)1噸甲產(chǎn)品需要A原料0.25噸,每生產(chǎn)1噸乙產(chǎn)品需要A原料0.5噸.受市場影響,該廠能獲得的A原料至多為1000噸,其它原料充足.求出該工廠生產(chǎn)甲、乙兩種產(chǎn)品各為多少噸時(shí),能獲得最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=,BC=3,在BC邊上取兩點(diǎn)E、F(點(diǎn)E在點(diǎn)F的左邊),以EF為邊所作等邊△PEF,頂點(diǎn)P恰好在AD上,直線PE、PF分別交直線AC于點(diǎn)G、H.
(1)求△PEF的邊長;
(2)若△PEF的邊EF在線段CB上移動(dòng),試猜想:PH與BE有何數(shù)量關(guān)系?并證明你猜想的結(jié)論;
(3)若△PEF的邊EF在射線CB上移動(dòng)(分別如圖②和圖③所示,CF>1,P不與A重合),(2)中的結(jié)論還成立嗎?若不成立,直接寫出你發(fā)現(xiàn)的新結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com