分析 過A作AM⊥CD于M,根據(jù)勾股定理求出AD,分為三種情況:AD=DP或AD=AP或AP=DP,根據(jù)勾股定理求出CP,再逐個(gè)判斷即可.
解答 解:如圖:
過A作AM⊥CD于M,
∵AB⊥BC,DC⊥BC,
∴∠AMD=90°,∠B=∠C=∠AMC=90°,
∴四邊形ABCM是矩形,
∴CM=AB=1,AM=BC=3,
∴DM=2-1=1,
由勾股定理得:AD=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
∵△APD是等腰三角形,
∴分為三種情況:
①AP=DP,設(shè)CP=x,則BP=3-x,
在Rt△ABP和Rt△DCP中,由勾股定理得:AB2+BP2=CP2+DC2,
即12+(3-x)2=x2+22,
解得:x=1,
CP=1;
②AD=DP=$\sqrt{10}$,
CP=$\sqrt{D{P}^{2}-D{C}^{2}}$=$\sqrt{(\sqrt{10})^{2}-{2}^{2}}$=$\sqrt{6}$;
③AD=AP=$\sqrt{10}$,
BP=$\sqrt{A{P}^{2}-B{P}^{2}}$=$\sqrt{(\sqrt{10})^{2}-{1}^{2}}$=3,
CP=3-3=0,此時(shí)P和C重合,不符合題意舍去;
故答案為:1或$\sqrt{6}$.
點(diǎn)評(píng) 本題考查了勾股定理,等腰三角形的性質(zhì)的應(yīng)用,能求出符合條件的所有情況是解此題的關(guān)鍵,用了分類討論思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a3÷a=a3(a≠0) | B. | (-a)4=a4 | C. | 3a2•2a2=6a2 | D. | (a-b)2=a2-b2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (2$\sqrt{2}$,2$\sqrt{2}$) | B. | (3,4) | C. | (4,4) | D. | (4$\sqrt{2}$-1,4$\sqrt{2}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{π}$ | B. | $\frac{π}{2}$ | C. | $\frac{1}{2π}$ | D. | $\sqrt{2}π$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com