【題目】如圖,小麗準備測一根旗桿AB的高度,已知小麗的眼睛離地面的距離EC=1.5米,第一次測量點C和第二次測量點D之間的距離CD=10米,∠AEG=30°AFG=60°,請你幫小麗計算出這根旗桿的高度.(結(jié)果保留根號)

【答案】旗桿的高度為(1.5+)米.

【解析】試題分析:

由已知條件易證∠AEF=30°從而可得∠EAF=∠FEA,由此即可得到AF=EF=10結(jié)合∠AFG=30°,∠AGF=90°△AGF中可求得AG的長,再由AB=AG+BG即可得到AB的長了.

試題解析:

如下圖由題意知:∠AEG=30°,AFG=60°,EF=CD=10米,BG==EC=1.5米,

EAF=AFG﹣AEG=30°,

EAF=FEA,

可得:AF=EF=10米.

AG=AFsinAFG=10×=(米),

AB=AG+GB=1.5+)米,

答:旗桿的高度為(1.5+)米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).

1)數(shù)軸上點B對應的數(shù)是   ,點B到點A的距離是   ;

2)經(jīng)過幾秒,原點O是線段MN的中點?

3)經(jīng)過幾秒,點M,N分別到點B的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為預防傳染病,某校定期對教室進行藥熏消毒.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量 與藥物在空氣中的持續(xù)時間成正比例;燃燒后,成反比例(如圖所示).現(xiàn)測得藥物分鐘燃完,此時教室內(nèi)每立方米空氣含藥量為.根據(jù)以上信息解答下列問題:

1)分別求出藥物燃燒時及燃燒后 關(guān)于的函數(shù)表達式.

2)當每立方米空氣中的含藥量低于 時,對人體方能無毒害作用,那么從消毒開始,在哪個時段消毒人員不能停留在教室里?

3)當室內(nèi)空氣中的含藥量每立方米不低于 的持續(xù)時間超過分鐘,才能有效殺滅某種傳染病毒.試判斷此次消毒是否有效,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)的圖象交軸、軸分別于兩點,交直線。

1)求點的坐標;

2)若,求的值;

3)在(2)的條件下,是線段上一點,軸于,交,若,求點的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD,B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中,裝有2個紅球,1個白球,1個黃球,這些球除顏色外都相同.求下列事件的概率:

(1)攪勻后從中任意摸出1個球,恰好是紅球;

(2)攪勻后從中任意摸出2個球,2個都是紅球.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,∠A=80°,BDCE分別平分∠ABC、∠ACB,BDCE交于點F.

1)求∠BFC的度數(shù);

2)如圖2EG、DG分別平分∠AEF、∠ADF, EGDG交于點G ,求∠EGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,點D,E分別在AC,BC上,且CD·BCAC·CE,以E為圓心,DE長為半徑作圓,⊙E經(jīng)過點B,與AB,BC分別交于點F,G

(1)求證:AC是⊙E的切線;

(2)若AF=4,CG=5,

①求⊙E的半徑;

②若Rt△ABC的內(nèi)切圓圓心為I,則IE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一條直線 m 將如圖 1 的直角鐵皮分成面積相等的兩部分.圖 2、圖 3 分別是甲、乙兩同學給出的作法,對于兩人的作法判斷正確的是(

A. 甲正確,乙不正確B. 甲不正確,乙正確

C. 甲、乙都正確D. 甲、乙都不正確

查看答案和解析>>

同步練習冊答案