【題目】已知:A=x2+x+1,B=x+p-1,化簡:A·B-p·A,當(dāng)x=-1時,求其值.

【答案】解答:解: A·B-p·A 2
=(x2+x+1)(x+p-1)-p(x2+x+1)
=x(x2+x+1)+p(x2+x+1)-( x2+x+1)-p(x2+x+1)
=x3+x2+x-x2-x-1
=x3-1
當(dāng)x=-1時,原式=(-1)3-1=-2

【解析】先用一個多項式的每一項去乘另一個多項式的每一項,再把所得的積相加.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解多項式乘多項式的相關(guān)知識,掌握多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點(diǎn)O,E是BC的中點(diǎn),以下說法錯誤的是( 。

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球興趣小組7名學(xué)生參加投籃比賽,每人投10個,投中的個數(shù)分別為:8,5,7,5,8,6,8,則這組數(shù)據(jù)的中位數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動旋轉(zhuǎn)變換

(1)如圖,在ABC中,ABC=130°,將ABC繞點(diǎn)C逆時針旋轉(zhuǎn)50°得到ABC,連接BB,求ABB的大;

(2)如圖,在ABC中,ABC=150°,AB=3,BC=5,將ABC繞點(diǎn)C逆時針旋轉(zhuǎn)60°得到ABC,連接BB,以A為圓心,AB長為半徑作圓.

)猜想:直線BBA的位置關(guān)系,并證明你的結(jié)論;

)連接AB,求線段AB的長度;

(3)如圖,在ABC中,ABC=α(90°α<180°),AB=m,BC=n,將ABC繞點(diǎn)C逆時針旋轉(zhuǎn)2β角度(0°<2β<180°)得到ABC,連接AB和BB,以A為圓心,AB長為半徑作圓,問:角α與角β滿足什么條件時,直線BBA相切,請說明理由,并求此條件下線段AB的長度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解我市2019年中考數(shù)學(xué)學(xué)科各分?jǐn)?shù)段成績分布情況,從中抽取150名考生的中考數(shù)學(xué)成績進(jìn)行統(tǒng)計分析。在這個問題中,樣本是指(

A. 150B. 被抽取的150名考生

C. 我市2019年中考數(shù)學(xué)成績D. 被抽取的150名考生的中考數(shù)學(xué)成績

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:BE=DF,②∠DAF=15°,AC垂直平分EF,BE+DF=EF,SCEF=2SABE.其中正確結(jié)論有( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個單位長度的速度向點(diǎn)A運(yùn)動,同時,點(diǎn)N從點(diǎn)B出發(fā),以每秒1個單位長度的速度向點(diǎn)C運(yùn)動.其中一個動點(diǎn)到達(dá)終點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.過點(diǎn)NNP⊥AD于點(diǎn)P,連接ACNP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動時間為t秒.

1AM= ,AP= .(用含t的代數(shù)式表示)

2)當(dāng)四邊形ANCP為平行四邊形時,求t的值

3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t,

使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由

使四邊形AQMK為正方形,則AC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+3上的三點(diǎn),則y1,y2,y3的大小關(guān)系為( 。

A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好的開展“我愛閱讀”活動,小明針對某校七年級學(xué)生(共16個班,480名學(xué)生)課外閱讀喜歡圖書的種類(每人只能選一種書籍)進(jìn)行了調(diào)查.

(1)小明采取的下列調(diào)查方式中,比較合理的是 ;理由是:

A.對七年級(1)班的全體同學(xué)進(jìn)行問卷調(diào)查;

B.對七年級各班的語文科代表進(jìn)行問卷調(diào)查;

C.對七年級各班學(xué)號為3的倍數(shù)的全體同學(xué)進(jìn)行問卷調(diào)查.

(2)小明根據(jù)問卷調(diào)查的結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息解答下列問題:

① 在扇形統(tǒng)計圖中,“其它”所在的扇形的圓心角等于 度;

② 補(bǔ)全條形統(tǒng)計圖;

③ 根據(jù)調(diào)查結(jié)果,估計七年級課外閱讀喜歡“漫畫”的同學(xué)有 人.

查看答案和解析>>

同步練習(xí)冊答案