(2000•上海)在梯形ABCD中,AD∥BC,AC,BD相交于點O,若AD:BC=1:3,那么下列結論中正確的是( )
A.S△COD=9S△AOD
B.S△ABC=9S△ACD
C.S△BOC=9S△AOD
D.S△DBC=9S△AOD
【答案】分析:由于AD∥BC,可得出△AOD∽△COB;根據(jù)相似三角形的面積比等于相似比的平方,可得出△AOD和△BOC的比例關系式.根據(jù)等高三角形的面積比等于底邊比,可得出△AOD與△AOB、△COD的比例關系.可據(jù)此進行判斷.
解答:解:如圖:∵AD∥BC,
∴△AOD∽△COB,
,
∴S△AOD:S△BOC=1:9,
S△AOD:S△COD:S△AOB=1:3:3,
S△BOC:S△COD:S△AOB=3:1:1,
因此S△AOD:S△ABC:S△DBC=1:12:12.
故本題選C.
點評:本題考查對相似三角形性質(zhì)的理解,相似三角形面積的比等于相似比的平方.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《四邊形》(02)(解析版) 題型:填空題

(2000•上海)在正方形ABCD中,∠ABD的余弦值等于   

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2000•上海)在梯形ABCD中,AD∥BC,AC,BD相交于點O,若AD:BC=1:3,那么下列結論中正確的是( )
A.S△COD=9S△AOD
B.S△ABC=9S△ACD
C.S△BOC=9S△AOD
D.S△DBC=9S△AOD

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2000•上海)在函數(shù)、y=x+5、y=x2圖象中,是中心對稱圖形,且對稱中心是原點的圖象共有( )
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前10日信息題復習題精選(5)(解析版) 題型:填空題

(2000•上海)在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中點O為旋轉(zhuǎn)中心,將這個三角形旋轉(zhuǎn)180°,點B落在點B′處,那么點B′與點B的原來位置相距    cm.

查看答案和解析>>

同步練習冊答案