【題目】如圖,開口向下的拋物線與軸交于點(diǎn)、,與軸交于點(diǎn),點(diǎn)是第一象限內(nèi)拋物線上的一點(diǎn).
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)設(shè)四邊形的面積為,求的最大值.
【答案】(1);(2)8
【解析】
(1)設(shè)二次函數(shù)表達(dá)式為,再將點(diǎn)C代入,求出a值即可;
(2)連接OP,設(shè)點(diǎn)P坐標(biāo)為(m,),m>0,利用S四邊形CABP=S△OAC+S△OCP+S△OPB得出S關(guān)于m的表達(dá)式,再求最值即可.
解:(1)∵A(-1,0),B(2,0),C(0,4),
設(shè)拋物線表達(dá)式為:,
將C代入得:,
解得:a=-2,
∴該拋物線的解析式為:;
(2)連接OP,設(shè)點(diǎn)P坐標(biāo)為(m,),m>0,
∵A(-1,0),B(2,0),C(0,4),
可得:OA=1,OC=4,OB=2,
∴S=S四邊形CABP=S△OAC+S△OCP+S△OPB
=
=
當(dāng)m=1時(shí),S最大,且為8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)是邊上的一個(gè)動點(diǎn),將沿折疊,得到.連接、,若為等腰三角形,則的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某百貨公司進(jìn)了一批商品,進(jìn)貨價(jià)為20元/件,有專家預(yù)計(jì)月銷量(件)關(guān)于售價(jià)(元/件)的函數(shù)解析式為
(1)若百貨公司銷售該商品月利潤為元,寫出與的函數(shù)關(guān)系式;
(2)當(dāng)售價(jià)為多少時(shí),百貨公司銷售該商品的月利潤最大,最大月利潤是多少?
(3)當(dāng)百貨公司銷售該商品的月利潤不少于400元時(shí),試確定商品的售價(jià)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=4,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AD邊上的一個(gè)動點(diǎn),將△AEF沿EF所在直線翻折,得到△A'EF,連接A'C,A'D,則當(dāng)△A'DC是以A'D為腰的等腰三角形時(shí),FD的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(4,0),點(diǎn)C坐標(biāo)為(0,4),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的表達(dá)式及對稱軸;
(2)點(diǎn)F是拋物線上的動點(diǎn),當(dāng)∠FBA=2∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(3)若點(diǎn)P是x軸上方拋物線上的動點(diǎn),以PB為邊作正方形PBGH,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)G或H恰好落在y軸上時(shí),請直接寫出點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,點(diǎn)在邊上,連接將沿折疊,若點(diǎn)的對稱點(diǎn)到的距離為,則的長為______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某漁船在海面上朝正東方向勻速航行,在A處觀測到燈塔M在北偏東60°方向上,且AM =海里,那么該船繼續(xù)航行______海里可使?jié)O船到達(dá)離燈塔距離最近的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李2014年參加工作,每年年底都把本年度收入減去支出后的余額存入銀行(存款利息記入收入),2014年底到2019年底,小李的銀行存款余額變化情況如下表所示:(單位:萬元)
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
收入 | 3 | 8 | 9 | 14 | 18 | |
支出 | 1 | 4 | 5 | 6 | 6 | |
存款余額 | 2 | 6 | 10 | 15 | 34 |
(1)表格中________;
(2)請把下面的條形統(tǒng)計(jì)圖補(bǔ)充完整:(畫圖后標(biāo)注相應(yīng)的數(shù)據(jù))
(3)請問小李在哪一年的支出最多?支出了多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com