【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),點B(3,0),交y軸于點C,給出下列結(jié)論:①a:b:c=﹣1:2:3;②對于任意實數(shù)m,一定有am2+bm+a≤0;③元二次方程cx2+bx+a=0的兩根為﹣1和,其中正確的結(jié)論是( 。
A.①②③B.①②C.①③D.②③
【答案】A
【解析】
本題考查一元二次函數(shù)的圖像性質(zhì).對于結(jié)論①,根據(jù)函數(shù)經(jīng)過點A、B,將點的坐標(biāo)代入函數(shù),得出b=﹣2a,c=﹣3a,故可得出a、b、c之間的比例關(guān)系;對于結(jié)論②,先將函數(shù)解析式化為頂點式,求出頂點坐標(biāo),再將拋物線向下平移﹣4a個單位,則拋物線頂點為(1,0),最后求出平移后的解析式,繼而判斷其取值情況;對于結(jié)論③,方程cx2+bx+a=0化為﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,故可判斷其正誤.
解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),點B(3,0),
∴拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,
∴b=﹣2a,c=﹣3a,
∴a:b:c=﹣1:2:3,故①正確;
∵y=ax2﹣2ax﹣3a=a[(x﹣1)2﹣4]=a(x﹣1)2﹣4a,
∴頂點坐標(biāo)為(1,﹣4a),
∵拋物線開口向下,c=﹣3a,
∴拋物線向下平移﹣4a個單位,則拋物線頂點為(1,0),
∴平移后的解析式為:y′=ax2+bx+c+4a=ax2+bx﹣3a+4a=ax2+bx+a≤0,故②正確;
∵b=﹣2a,c=﹣3a,
∴方程cx2+bx+a=0化為﹣3ax2﹣2ax+a=0,
整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以③正確.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把置于平面直角坐標(biāo)系中,點A的坐標(biāo)為,點B的坐標(biāo)為,點P是內(nèi)切圓的圓心,將沿x軸的正方向作無滑動滾動,使它的三邊依次與x軸重合。第一次滾動后,圓心為,第二次滾動后圓心為…依次規(guī)律,第2019次滾動后,內(nèi)切圓的圓心的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.的三個頂點、、都在格點上,將繞點逆時針方向旋轉(zhuǎn)得到;
(1)在正方形網(wǎng)格中,畫出;
(2)分別畫出旋轉(zhuǎn)過程中,點和點經(jīng)過的路徑,并計算點所走過的路徑的長度;
(3)計算線段在變換到的過程中掃過區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進(jìn)貨單價多少元?
(2)若二次購進(jìn)飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AB=AC,AD平分∠BAC交BC于點D,在線段AD上任取一點P(點A除外),過點P作EF∥AB.分別交AC、BC于點E和點F,作PQ∥AC,交AB于點Q,連接QE.
(1)求證:四邊形AEPQ為菱形:
(2)當(dāng)點P在線段EF上的什么位置時,菱形AEPQ的面積為四邊形EFBQ面積的一半?請說明理
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,以BC為邊向外作等邊△BCD.
(Ⅰ)∠ABD+∠ACD=_____.
(Ⅱ)∠BAD=_____.
(Ⅲ)若AB=3,AC=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com