【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC,AD,AB于點(diǎn)E,O,F(xiàn),則圖中全等三角形的對(duì)數(shù)是(

A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)

【答案】D
【解析】解:∵EF是AC的垂直平分線,
∴OA=OC,
又∵OE=OD,
∴Rt△AOE≌Rt△COE,
∵AB=AC,D是BC的中點(diǎn),
∴AD⊥BC,
∴△ABC關(guān)于直線AD軸對(duì)稱,
∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,
綜上所述,全等三角形共有4對(duì).
故選D.
根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得OA=OC,然后判斷出△AOE和△COE全等,再根據(jù)等腰三角形三線合一的性質(zhì)可得AD⊥BC,從而得到△ABC關(guān)于直線AD軸對(duì)稱,再根據(jù)全等三角形的定義寫出全等三角形即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初中為了提高學(xué)生綜合素質(zhì),決定開設(shè)以下校本課程:A軟筆書法;B經(jīng)典誦讀;C鋼筆畫;D花樣跳繩;為了了解學(xué)生最喜歡哪一項(xiàng)校本課程,隨機(jī)抽取了部分學(xué)生進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:

(1)這次被調(diào)查的學(xué)生共有多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

(3)在平時(shí)的花樣跳繩的課堂學(xué)習(xí)中,甲、乙、丙三人表現(xiàn)優(yōu)秀,現(xiàn)決定從這三名同學(xué)中任選兩名參加全區(qū)綜合素質(zhì)展示,求恰好同時(shí)選中甲、乙兩位同學(xué)的概率(用樹狀圖法或表格法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+2x﹣2的圖象的頂點(diǎn)坐標(biāo)是(
A.(2,﹣2)
B.(1,﹣2)
C.(1,﹣3)
D.(﹣1,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程
(1)解方程:5x+12=2x﹣9
(2)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)相似三角形的最短邊分別為5cm3cm,它們的周長(zhǎng)之和為48cm,那么小三角形的周長(zhǎng)為

A. 12cm B. 18cm

C. 24cm D. 30cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是( )

直線上一點(diǎn)到圓心的距離大于半徑,則直線與圓相離;直線上一點(diǎn)到圓心的距離等于半徑,則直線與圓相切;直線上一點(diǎn)到圓心的距離小于半徑,則直線與圓相交.

A.①②③B.①②C.②③D.③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)O是△ABC內(nèi)一點(diǎn),且點(diǎn)O到三邊的距離相等,∠A=50°,則∠BOC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國(guó)煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時(shí)起,井內(nèi)空氣中CO的濃度達(dá)到4 mg/L,此后濃度呈直線型增加,在第7小時(shí)達(dá)到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據(jù)題中相關(guān)信息回答下列問題:

(1)求爆炸前后空氣中CO濃度y與時(shí)間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;

(2)當(dāng)空氣中的CO濃度達(dá)到34 mg/L時(shí),井下3 km的礦工接到自動(dòng)報(bào)警信號(hào),這時(shí)他們至少要以多少km/h的速度撤離才能在爆炸前逃生?

(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時(shí),才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時(shí)才能下井?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,點(diǎn)E在BA的延長(zhǎng)線上,點(diǎn)D在BC邊上,且ED=EC.若△ABC的邊長(zhǎng)為4,AE=2,則BD的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案