分析 (1)先利用勾股定理計算出AB=50cm,再利用面積法可計算出CD=24cm;
(2)如圖,先證明△CEF∽△CAB,由于斜邊上的高CD被五等分,所以$\frac{EF}{AB}$=$\frac{CK}{CD}$=$\frac{1}{5}$則EF=$\frac{1}{5}$×50=10,同理可得MN=$\frac{2}{5}$AB=20,PQ=$\frac{3}{5}$AB=30,GH=$\frac{4}{5}$AB=40,然后根據(jù)矩形的面積公式計算.
解答 解:(1)∵∠ACB=90°,AC=30cm,BC=40cm,
∴AB=$\sqrt{3{0}^{2}+4{0}^{2}}$=50(cm),
∵$\frac{1}{2}$CD•AB=$\frac{1}{2}$AC•BC,
∴CD=$\frac{30×40}{50}$=24(cm);
(2)如圖,∵EF∥AB,
∴△CEF∽△CAB,
∴$\frac{EF}{AB}$=$\frac{CK}{CD}$=$\frac{1}{5}$,
∴EF=$\frac{1}{5}$×50=10,
同樣方法可得MN=$\frac{2}{5}$AB=20,
PQ=$\frac{3}{5}$AB=30,
GH=$\frac{4}{5}$AB=40,
∴這4張紙條的面積和=10×$\frac{24}{5}$+20×$\frac{24}{5}$+30×$\frac{24}{5}$+40×$\frac{24}{5}$=480(cm2).
故答案為24cm,480cm2.
點評 本題考查了相似三角形的應(yīng)用:常常構(gòu)造“A”型或“X”型相似圖,然后利用三角形相似,對應(yīng)邊成比例計算相應(yīng)線段的長.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (+3)-|-3| | B. | |+3|+|-3| | C. | (-3)-3 | D. | $\frac{2}{3}+$(-$\frac{3}{2}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com