【題目】二次函數(shù)的圖象如圖所示,則下列關(guān)系正確的是( )
A. B. C. D.
【答案】D
【解析】
由拋物線的開(kāi)口方向判斷a與0的關(guān)系,再利用根據(jù)圖象可得出圖象與x軸負(fù)半軸交點(diǎn)大于-1,得出當(dāng)x=-1時(shí),a-b+c>0,由拋物線與x軸的交于1到2之間,將2代入得出4a+2b+c>0,然后根據(jù)對(duì)稱(chēng)軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
A.∵該拋物線的開(kāi)口方向向上,
∴a>0;故此選項(xiàng)錯(cuò)誤;
B.∵根據(jù)圖象可得出圖象與x軸負(fù)半軸交點(diǎn)大于1,
∴當(dāng)x=1時(shí),ab+c>0,故此選項(xiàng)錯(cuò)誤;
C.∵該拋物線與x軸交于1到2之間,
∴結(jié)合圖象得出4a+2b+c>0,故此選項(xiàng)錯(cuò)誤;
D. 由圖象可知,該拋物線與x軸有兩個(gè)不同的交點(diǎn),
∴b24ac>0;故此選項(xiàng)正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店兩次購(gòu)進(jìn)一批同型號(hào)的熱水壺和保溫杯,第一次購(gòu)進(jìn) 12 個(gè)熱水壺和 15 個(gè)保溫杯,共用去資金 2850 元,第二次購(gòu)進(jìn) 20 個(gè)熱水壺和 30 個(gè)保溫杯,用去資金 4900元(購(gòu)買(mǎi)同一商品的價(jià)格不變)
(1)求每個(gè)熱水壺和保溫杯的采購(gòu)單價(jià)各是多少元?
(2)若商場(chǎng)計(jì)劃再購(gòu)進(jìn)同種型號(hào)的熱水壺和保溫杯共 80 個(gè),求所需購(gòu)貨資金 w(元) ,購(gòu)買(mǎi)熱水壺的數(shù)量 m(個(gè))的函數(shù)表達(dá)式.
(3)在(2)的基礎(chǔ)上,若準(zhǔn)備購(gòu)買(mǎi)保溫杯的數(shù)量是熱水壺?cái)?shù)量的 3 倍,則該商店需要準(zhǔn)備多少元的購(gòu)貨資金?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,M是邊AB的中點(diǎn),連接CM并延長(zhǎng)到點(diǎn)E,使得EM=AB,D 是邊AC上一點(diǎn),且AD=BC,連接DE.則∠CDE的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形OABC的邊OC=2,將過(guò)點(diǎn)B的直線y=x﹣3與x軸交于點(diǎn)E.
(1)求點(diǎn)B的坐標(biāo);
(2)連結(jié)CE,求線段CE的長(zhǎng);
(3)若點(diǎn)P在線段CB上且OP=,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=70°∠B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若△EFC為直角三角形,則∠BDF的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)的圖象的一部分,圖象過(guò)點(diǎn),對(duì)稱(chēng)軸是直線,給出五個(gè)結(jié)論:①;②;③;④;⑤.其中正確的是________(把你認(rèn)為正確的序號(hào)都填上,答案格式如:“”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB⊥BC,AB = BC,E為BC上一點(diǎn),連接AE,過(guò)點(diǎn)C作CF⊥AE,交AE的延長(zhǎng)線于點(diǎn)F,連結(jié)BF,過(guò)點(diǎn)B作BG⊥BF交AE于G.
(1)求證:△ABG ≌ △CBF;
(2)若E為BC中點(diǎn),求證:CF + EF = EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.
(1)請(qǐng)用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);
(2)若△OEF的面積為9,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,AB∥CD,AD//BC,點(diǎn)E,F在對(duì)角線AC上,且AE=CF,請(qǐng)你分別以E,F為一端點(diǎn),和圖中已標(biāo)字母的某點(diǎn)連成兩條相等的新線段(只需證明一組線段相等即可).
(1)連接 ;
(2)結(jié)論: = ;
(3)證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com