【題目】已知△ABC,AB=AC,∠BAC=90°,D為△ABC外部一點(diǎn),∠BDC=45°,點(diǎn)F在CD上且AF∥DB.
(1)如圖①,求證:;
(2)如圖②,將△BCD沿BC翻折得到△BCD1,過點(diǎn)B作BG⊥CD1,垂足為G,連接AG交CD于E,交BC于H.若AF=,∠BCD=15°,求AG的長度.
【答案】(1)證明見解析;(2)
【解析】
(1)過點(diǎn)A作AM⊥AF,交DC于點(diǎn)M,連接BM,利用平行線的性質(zhì)得到∠AMF=45°,從而得到△AMF是等腰直角三角形,MF=,然后利用AAS定理證得△ABM≌△ACF,然后根據(jù)全等三角形的性質(zhì)得出∠AMB=∠AFC=180°-∠AFM=135°,再結(jié)合已知條件求得△BDM是等腰直角三角形,,從而使問題得解;
(2)過點(diǎn)A作AM⊥AF,交DC于點(diǎn)M,連接BM,過點(diǎn)A作AN⊥CD,AK⊥CG,根據(jù)(1)中的證明,通過利用等腰直角三角形及折疊的性質(zhì)得到CD=C D1=,∠D=∠D1=45°,∠DCB=∠D1CB=15°,BC平分∠DCD1,然后利用含30°直角三角形的性質(zhì),求得,,最后利用勾股定理求解.
解:(1)如圖1,過點(diǎn)A作AM⊥AF,交DC于點(diǎn)M,連接BM
∵∠BDC=45°,且AF∥DB
∴∠AFM=45°
又∵AM⊥AF,∴∠MAF=90°
∴∠AMF=∠AFM=45°
∴AM=AF,即△AMF是等腰直角三角形
∴MF=
又因?yàn)椤?/span>BAC=90°,∠MAF=90°
∴∠MAB+∠BAF=∠FAC+∠BAF=90°
∴∠MAB =∠FAC
又∵AB=AC
∴△ABM≌△ACF
∴∠AMB=∠AFC=180°-∠AFM=135°
所以∠BMC=90°
又因?yàn)椤?/span>BDC=45°
∴△BDM是等腰直角三角形
∴
∴DF-MF=DM
即;
(2)如圖2,過點(diǎn)A作AM⊥AF,交DC于點(diǎn)M,連接BM,過點(diǎn)A作AN⊥CD,AK⊥CG
由(1)可知△BDM和△AMF是等腰直角三角形, △ABM≌△ACF
∴AM=AF=,MF=,∠AMF=45°
又∵AN⊥CD
∴
∵∠BCD=15°,∴在Rt△ANC中,∠CAN=30°
∴AC=2AN=2,CN=
又∵等腰直角△AMF中,AN⊥MF,
∴MN=NF
∵△ABM≌△ACF且△BDM是等腰直角三角形
∴BM=DM=CF
∴MN+DM=NF+CF
∴CD=,DM=BM=CF=
又由折疊性質(zhì)可知,CD=C D1=,∠D=∠D1=45°,∠DCB=∠D1CB=15°,BC平分∠DCD1
∴∠ACK=60°,在Rt△ACK中,∠CAK=30°
∴,
∵BG⊥CD1,BM⊥CD
∴BG=D1G=,CG=
∴GK=CG-CK=
∴在Rt△AGK中,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A(a,0),B(0,b)其中a,b滿足.點(diǎn)C為x軸正半軸上的一點(diǎn),且點(diǎn)C在點(diǎn)A右側(cè),若點(diǎn)D為第一象限內(nèi)一點(diǎn),且滿足CD⊥CB,.
(1)求A,B的坐標(biāo);
(2)如圖1,點(diǎn)E為BD中點(diǎn),連接OE,求證:;
(3)如圖2,若點(diǎn)F、G是BA上的兩個(gè)動(dòng)點(diǎn),且,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C,F為⊙O上兩點(diǎn),過C作CD⊥AB于點(diǎn)D,交⊙O于點(diǎn)E,延長EC交BF的延長線于點(diǎn)G,連接CF,EG.
(1)求證:∠BFE=∠CFG;
(2)若FG=4,BF=6,CF=3.求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,命題:①若∠B=∠C-∠A,則△ABC是直角三角形.②若a2=(b+c)(b-c),則△ABC是直角三角形.③若∠A∶∠B∶∠C=3∶4∶5,則△ABC是直角三角形.④若a∶b∶c=5∶4∶3.則△ABC是直角三角形. 其中假命題個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距300千米,甲、乙兩車同時(shí)從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達(dá)B地,停留1小時(shí)后,速度不變,按原路返回.設(shè)兩車行駛的時(shí)間是x小時(shí),離開A地的距離是y千米,如圖是y與x的函數(shù)圖象.
(1)甲車的速度是 ,乙車的速度是 ;
(2)甲車在返程途中,兩車相距20千米時(shí),求乙車行駛的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?
(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,AB的垂直平分線交線段AC于D,若△ABC和△DBC的周長分別是60 cm和38 cm,則△ABC的腰長和底邊BC的長分別是( )
A. 22cm和16cmB. 16cm和22cm
C. 20cm和16cmD. 24cm和12cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com