計(jì)算:
(1)(-1)2014+(
1
2
-2-(3.14-π)0;
(2)
2014
20132-2012×2014
考點(diǎn):平方差公式,零指數(shù)冪,負(fù)整數(shù)指數(shù)冪
專題:計(jì)算題
分析:(1)原式第一項(xiàng)利用乘方的意義化簡(jiǎn),第二項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,最后一項(xiàng)利用零指數(shù)冪法則計(jì)算即可得到結(jié)果;
(2)原式分母變形后,利用平方差公式化簡(jiǎn),計(jì)算即可得到結(jié)果.
解答:解:(1)原式=1+4-1=4;
(2)原式=
2014
20132-(2013-1)×(2013+1)
=
2014
20132-20132+1
=2014.
點(diǎn)評(píng):此題考查了平方差公式,以及實(shí)數(shù)的運(yùn)算,熟練掌握公式及法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB∥CD,直線EF分別交AB、CD于點(diǎn)E、F,EG平分∠AEF,∠2=110°,求∠1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒一個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形;
(3)當(dāng)t為何值時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲乙同時(shí)從點(diǎn)A出發(fā),在周長(zhǎng)為90米的圓形跑道上背向而馳,甲以1.5米/秒的速度作順時(shí)針運(yùn)動(dòng),乙以4.5米/秒的速度作逆時(shí)針運(yùn)動(dòng).
(1)出發(fā)后經(jīng)過(guò)多少時(shí)間他們第一次相遇?
(2)在第一次相遇前,經(jīng)過(guò)多少時(shí)間兩者相距
45
3
π
米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,拋物線C1:y=ax2+bx+2與直線AB:y=
1
2
x+
1
2
交于x軸上的一點(diǎn)A和另一點(diǎn)B (3,n).
(1)求點(diǎn)B的坐標(biāo)和拋物線C1的解析式;
(2)點(diǎn)P是拋物線C1上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P在A,B兩點(diǎn)之間,但不包括A,B兩點(diǎn)),若點(diǎn)P的橫坐標(biāo)為m,且PM⊥AB于點(diǎn)M,PN∥y軸交AB于點(diǎn)N,
①試用含m的代數(shù)式表示PN的長(zhǎng)度;
②在點(diǎn)P的運(yùn)動(dòng)過(guò)程中存在某一位置,使得△PMN的周長(zhǎng)最大,求△PMN周長(zhǎng)的最大值;
(3)如圖2,將拋物線C1繞頂點(diǎn)旋轉(zhuǎn)180°后,再作適當(dāng)平移得到拋物線C2,已知拋物線C2的頂點(diǎn)E在第四象限的拋物線C1上,且拋物線C2拋物線C1交于點(diǎn)D,過(guò)D點(diǎn)作x軸的平行線交拋物線C2于點(diǎn)F,過(guò)E點(diǎn)作x軸的平行線交拋物線C1于點(diǎn)G,是否存在這樣的拋物線C,使得四邊形DFEG為菱形?若存在,請(qǐng)求E點(diǎn)的橫坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x為偶數(shù),且
x-1
3-x
=
x-1
3-x
,y=
1-2x+x2
+
4x+1
,求代數(shù)式
x
y
+
y
x
+2
-
x
y
+
y
x
-2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1)(x-3)(x+2)-(x-2)2;
(2)(6a3-3a2+2a)÷2a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀理解:
若A、B、C為數(shù)軸上三點(diǎn),若點(diǎn)C到A的距離是點(diǎn)C到B的距離2倍,我們就稱點(diǎn)C是【A,B】的好點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是【A,B】的好點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D就不是【A,B】的好點(diǎn),但點(diǎn)D是【B,A】的好點(diǎn).

知識(shí)運(yùn)用:如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為-2,點(diǎn)N所表示的數(shù)為4.

(1)數(shù)
 
所表示的點(diǎn)是【M,N】的好點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為-20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.當(dāng)t為何值時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小紅有1個(gè)5分幣、4個(gè)2分幣、8個(gè)1分幣,要拿出8分錢,你能找出
 
種拿法.

查看答案和解析>>

同步練習(xí)冊(cè)答案