分析 (1)利用已知條件和矩形的性質(zhì)易證△AEO≌△CFO,進(jìn)而可得四邊形AECF是平行四邊形,又因?yàn)镋F⊥AC,所以可證明四邊形AECF是菱形
(2)設(shè)AE=CE=x,則DE=4-x,在直角三角形EDC中,利用勾股定理可求出x的值,進(jìn)而可求出菱形的周長(zhǎng).
解答 (1)證明:∵四邊形ABCD是矩形,
∴AO=CO,AD∥BC,
∴∠OAE=∠OCF,
∵EF⊥AC,
∴∠AOE=∠COF=90°,
在△AEO和△CFO中,
$\left\{\begin{array}{l}{∠OAE=∠OCF}\\{AO=CO}\\{∠AOE=∠COF}\end{array}\right.$,
∴△AEO≌△CFO,
∴OE=OF,
∵AO=CO,
∴四邊形AECF是平行四邊形,
∵EF⊥AC,
∴四邊形AECF是菱形;
(2)解:∵四邊形ABCD是矩形,
∴AB=CD=3,BC=AD=4,
AE=CE=x,則DE=4-x,在直角三角形EDC中由勾股定理可得:CE2=DE2+CD2,
即a2=(4-a)2+32,
解得:a=$\frac{25}{8}$,
∴菱形AECF的周長(zhǎng)=4×$\frac{25}{8}$=12.5.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、菱形的判定和性質(zhì)以及勾股定理的運(yùn)用,熟記各種特殊四邊形的判定方法和性質(zhì)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ③ | B. | ①③ | C. | ②③ | D. | ① |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{4}}{3}$ | B. | 0 | C. | 0.$\stackrel{•}{7}$ | D. | $\root{3}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com