【題目】隨著春節(jié)臨近,某兒童游樂場推出了甲、乙兩種消費(fèi)卡,設(shè)消費(fèi)次數(shù)為時(shí),所需費(fèi)用為元,且與的函數(shù)關(guān)系如圖所示. 根據(jù)圖中信息,解答下列問題;
(1)分別求出選擇這兩種卡消費(fèi)時(shí),關(guān)于的函數(shù)表達(dá)式.
(2)求出點(diǎn)坐標(biāo).
(3)洋洋爸爸準(zhǔn)備元錢用于洋洋在該游樂場消費(fèi),請問選擇哪種消費(fèi)卡劃算?
【答案】(1)y甲=20x;y乙=10x+100;(2)點(diǎn)B的坐標(biāo)為(10,200);(3)選擇乙種消費(fèi)卡劃算.
【解析】
(1)運(yùn)用待定系數(shù)法,即可求出y與x之間的函數(shù)表達(dá)式;
(2)聯(lián)立兩個(gè)函數(shù)解析式為方程組,求出方程組的解即可得出點(diǎn)B的坐標(biāo);
(3)根據(jù)函數(shù)值等于240,分別求出兩種消費(fèi)卡的消費(fèi)次數(shù),即可得出結(jié)果.
解:(1)設(shè)y甲=k1x,根據(jù)題意得5k1=100,解得k1=20,∴y甲=20x;
設(shè)y乙=k2x+100,根據(jù)題意得:20k2+100=300,解得k2=10,∴y乙=10x+100;
(2)由題意得,
,解得.
故點(diǎn)B的坐標(biāo)為(10,200);
(3)令y甲=20x=240,解得x=12;
令y乙=10x+100=240,解得x=14.
∵12<14,
∴選擇乙種消費(fèi)卡劃算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在南開中學(xué)校慶78周年之際,由學(xué)生處和美術(shù)教研組共同策劃、組織了“南開中學(xué)校園明信片設(shè)計(jì)大賽”。獲得此次設(shè)計(jì)大賽組織一等獎(jiǎng)的、、、四個(gè)班級一共有75件作品獲獎(jiǎng),已知班參賽作品的獲獎(jiǎng)率為30%,班參賽作品的獲獎(jiǎng)率為40%。請結(jié)合兩幅統(tǒng)計(jì)圖所提供的信息,解決下列問題:
(1)四個(gè)班級一共選送了多少件作品參賽,獲獎(jiǎng)率最高的班級是哪個(gè)班;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)班的小欣和小怡同學(xué)在本次大賽中榮獲個(gè)人一等獎(jiǎng),此外、兩班各有一名同學(xué)榮獲個(gè)人一等獎(jiǎng)。南開中學(xué)校友會(huì)準(zhǔn)備從這4名同學(xué)的作品中任選兩件,制作成新年賀卡送給老校友。請用列表法或畫樹狀圖的方法求出這兩件作品分別來自不同班級,且其中一件是小欣或小怡作品的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若兩個(gè)分式的和為(為正整數(shù)),則稱這兩個(gè)分式互為“階分式”,例如分式與互為“3階分式”.
(1)分式與 互為“5階分式”;
(2)設(shè)正數(shù)互為倒數(shù),求證:分式與互為“2階分式”;
(3)若分式與互為“1階分式”(其中為正數(shù)),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電銷售商場電冰箱的銷售價(jià)為每臺1600元,空調(diào)的銷售價(jià)為每臺1400元,每臺電冰箱的進(jìn)價(jià)比每臺空調(diào)的進(jìn)價(jià)多300元,商場用9000元購進(jìn)電冰箱的數(shù)量與用7200元購進(jìn)空調(diào)數(shù)量相等.
(1)求每臺電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商場準(zhǔn)備一次購進(jìn)這兩種家電共100臺,設(shè)購進(jìn)電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?
(3)實(shí)際進(jìn)貨時(shí),廠家對電冰箱出廠價(jià)下調(diào)K(0<K<150)元,若商場保持這兩種家電的售價(jià)不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺家電銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線BD經(jīng)過的坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=的圖象上,若點(diǎn)A的坐標(biāo)為(﹣2,﹣3),則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(diǎn)(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.
(1)請判斷四邊形AEA′F的形狀,并說明理由;
(2)當(dāng)四邊形AEA′F是正方形,且面積是△ABC的一半時(shí),求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點(diǎn),頂點(diǎn)為D(0,4),AB=4,設(shè)點(diǎn)F(m,0)是x軸的正半軸上一點(diǎn),將拋物線C繞點(diǎn)F旋轉(zhuǎn)180°,得到新的拋物線C/.
(1)求拋物線C的函數(shù)表達(dá)式;
(2)若拋物線C/與拋物線C在y軸的右側(cè)有兩個(gè)不同的公共點(diǎn),求m的取值范圍.
(3)如圖2,P是第一象限內(nèi)拋物線C上一點(diǎn),它到兩坐標(biāo)軸的距離相等,點(diǎn)P在拋物線C/上的對應(yīng)點(diǎn)P/,設(shè)M是C上的動(dòng)點(diǎn),N是C/上的動(dòng)點(diǎn),試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報(bào)社為了解市民對“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個(gè)等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市大約有多少人對“社會(huì)主義核心價(jià)值觀”達(dá)到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山坡AB的坡度i=1:,AB=10米,AE=15米.在高樓的頂端豎立一塊倒計(jì)時(shí)牌CD,在點(diǎn)B處測量計(jì)時(shí)牌的頂端C的仰角是45°,在點(diǎn)A處測量計(jì)時(shí)牌的底端D的仰角是60°,求這塊倒計(jì)時(shí)牌CD的高度.(測角器的高度忽略不計(jì),結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com