、(本題12分)如圖,設(shè)拋物線C1:, C2:,C1與C2的交點(diǎn)為A, B,點(diǎn)A的坐標(biāo)是,點(diǎn)B的橫坐標(biāo)是-2.
1.(1)求的值及點(diǎn)B的坐標(biāo);
2.(2)點(diǎn)D在線段AB上,過(guò)D作x軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG. 記過(guò)C2頂點(diǎn)M的直線為,且與x軸交于點(diǎn)N.
① 若過(guò)△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1, 2),求點(diǎn)N的橫坐標(biāo);
② 若與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.
1.解:(1)∵ 點(diǎn)A在拋物線C1上,∴ 把點(diǎn)A坐標(biāo)代入得 =1.
∴ 拋物線C1的解析式為,
設(shè)B(-2,b), ∴ b=-4, ∴ B(-2,-4) .
2.
(2)①如圖1,
∵ M(1, 5),D(1, 2), 且DH⊥x軸,∴ 點(diǎn)M在DH上,MH=5.
過(guò)點(diǎn)G作GE⊥DH,垂足為E,
由△DHG是正三角形,可得EG=, EH=1,
∴ ME=4. 設(shè)N ( x, 0 ), 則 NH=x-1,
由△MEG∽△MHN,得 ,
∴ , ∴ ,
∴ 點(diǎn)N的橫坐標(biāo)為.
② 當(dāng)點(diǎn)D移到與點(diǎn)A重合時(shí),如圖2,
直線與DG交于點(diǎn)G,此時(shí)點(diǎn)N的橫坐標(biāo)最大.
過(guò)點(diǎn)G,M作x軸的垂線,垂足分別為點(diǎn)Q,F, 設(shè)N(x,0),
∵ A (2, 4), ∴ G (, 2),
∴ NQ=,NF =, GQ=2, MF =5.
∵ △NGQ∽△NMF,
∴ ,
∴ ,
∴ .
當(dāng)點(diǎn)D移到與點(diǎn)B重合時(shí),如圖3,直線與DG交于點(diǎn)D,即點(diǎn)B,
此時(shí)點(diǎn)N的橫坐標(biāo)最小.
∵ B(-2, -4), ∴ H(-2, 0), D(-2, -4),
設(shè)N(x,0),
∵ △BHN∽△MFN, ∴ ,
∴ , ∴ . ∴ 點(diǎn)N橫坐標(biāo)的范圍為 ≤x≤且x≠0.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點(diǎn)y軸上,,,B點(diǎn)坐標(biāo)為(4,0).點(diǎn)是邊上一點(diǎn),且.點(diǎn)、分別從、同時(shí)出發(fā),以1厘米/秒的速度分別沿、向點(diǎn)運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.⊙E半徑為,設(shè)運(yùn)動(dòng)時(shí)間為秒。
(1)求直線BC的解析式。
(2)當(dāng)為何值時(shí),?
(3)在(2)問(wèn)條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點(diǎn)的坐標(biāo)。如果不相切,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)=150°時(shí),試判斷△AOD 的形狀,并說(shuō)明理由;
(3)探究:當(dāng)為多少度時(shí),△AOD是等腰三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題12分)如圖,正方形ABCD的邊長(zhǎng)是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點(diǎn),逆時(shí)針旋轉(zhuǎn)三角尺.
(1)當(dāng)三角尺的一邊經(jīng)過(guò)C點(diǎn)時(shí),此時(shí)三角尺的另一邊和AB邊交于點(diǎn),求此時(shí)直線PM的解析式;
(2)繼續(xù)旋轉(zhuǎn)三角尺,三角尺的一邊與x軸交于點(diǎn)G, 三角尺的另一邊與AB交于,PM的延長(zhǎng)線與CD的延長(zhǎng)線交于點(diǎn)F,若三角形GF的面積為4,求此時(shí)直線PM的解析式;
(3)當(dāng)旋轉(zhuǎn)到三角尺的一邊經(jīng)過(guò)點(diǎn)B,另一直角邊的延長(zhǎng)線與x軸交于點(diǎn)G,,求此時(shí)三角形GOF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年人教版九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題12分)如圖,已知拋物線y=x2+3與x軸交于點(diǎn)A、B,與直線y=x+b相交于點(diǎn)B、C,直線y=x+b與y軸交于點(diǎn)E.
(1)寫(xiě)出直線BC的解析式;
(2)求△ABC的面積;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長(zhǎng)度的速度從A向B運(yùn)動(dòng)(不與A、B重合),同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長(zhǎng)度的速度從B向C運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)寫(xiě)出△MNB的面積s與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動(dòng)多少時(shí)間時(shí),△MNB的面積最大,最大面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com