【題目】在△ABC 中,AB=CB,∠ABC=90°,F 為 AB 延長線上一點,點 E 在 BC 上,且 AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=25,求∠BFC 度數.
(3)若∠CAE=15°,BF=3.求AE的長。
【答案】(1)答案見解析;(2)答案見解析;(3)答案見解析.
【解析】
(1)根據HL證明Rt△CBF≌Rt△ABE;
(2)推出∠BFC=∠BEA,求出∠CAB=∠ACB=45°,求出∠BEA=∠BCA+∠CAE,即可求出答案;
(3)根據全等三角形性質求出BE=BF,∠BAE=30°,利用30°所對直角邊等于斜邊的一半,即可求出答案.
解 :(1)∵∠ABC=90°,
∴∠ABE=∠CBF=90°,
在Rt△CBF和Rt△ABE中,
∴Rt△CBF≌Rt△ABE(HL),
(2)∵Rt△CBF≌Rt△ABE
∴∠BFC=∠BEA
又∵AB=CB,∠ABC=90°
∴∠CAB=∠ACB=45°
∴∠BFC=∠BEA=∠BCA+∠CAE=45°+25°=70°
(3))∵Rt△CBF≌Rt△ABE
∴BE=BF=3
∵∠BAE=∠BAC-∠CAE=30°,且∠CBA=90°
∴AE=2BE=6.
科目:初中數學 來源: 題型:
【題目】(12分)某賓館準備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.
(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;
(2)若該賓館準備同時購進這兩種型號的換氣扇共40臺并且A型換氣扇的數量不多于B型換氣扇數量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的面積為S,作△ABC邊中線AC1,取AB的中點A1,連接A1C1得到第一個三角形△A1BC1,作△A1BC1中線A1C2,取A1B的中點A2,連接A1C2得到第二個三角形△A2BC2………,重復這樣的操作,則第2019個三角形△A2019BC2019的面積是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知△ABC,以AB、AC為邊向△ABC外作等邊三角形ABD和等邊三角形ACE,連接BE、CD.請你完成圖形,并證明:BE=CD;
(2)如圖(2),已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE、CD,BE和CD有什么數量關系?說明理由;
(3)運用(1)(2)解答中所積累的經驗和知識,完成下題:如圖(3),要測量河兩岸相對的兩點B、E的距離,已經測得∠ABC=45°,∠CAE=90°,AB=BC=1千米,AC=AE.求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,對△ABC進行循環(huán)往復的軸對稱變換,若原來點A坐標是(2,3),則經過第2018次變換后所得的A點坐標是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt ABC中,,AB=5cm, AC=3cm, 動點P從點B出發(fā)沿射線BC以2cm/s 的速度移動,設運動的時間為t秒.t= __________ 時三角形ABP為直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一款名為超級瑪麗的游戲中,瑪麗到達一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點的高度MN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是邊長為的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點A,B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標;
(2)請你設計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com