(2009•濰坊)如圖,正方形ABCD的邊長為10,點(diǎn)E在CB的延長線上,EB=10,點(diǎn)P在邊CD上運(yùn)動(C,D兩點(diǎn)除外),EP與AB相交于點(diǎn)F,若CP=x,四邊形FBCP的面積為y,則y關(guān)于x的函數(shù)關(guān)系式是   
【答案】分析:BF是△ECP的中位線,四邊形FBCP為梯形,根據(jù)公式求解.
解答:解:∵正方形ABCD的邊長為10,CP=x,EB=10
∴BF是ECP的中位線,∴BF=CP=x
∵AB∥CD
∴四邊形FBCP是梯形,S梯形FBCP=(BF+CP)•BC=×10=
即y=(0<x<10).
點(diǎn)評:本題很簡單,只要熟知三角形的中位線定理及梯形的面積公式即可解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省鹽城市初級中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市枝江市雅畈中學(xué)九年級中考數(shù)學(xué)強(qiáng)化訓(xùn)練專題3 二次函數(shù)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河南省中考數(shù)學(xué)模擬試卷(06)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

同步練習(xí)冊答案