【題目】用恰當(dāng)?shù)姆椒ń庀铝蟹匠蹋?

【答案】解:根據(jù)題意可得,判別式△= (-4)2-41(-7)=44>0,
所以方程有兩個不等的實(shí)數(shù)根,
, ,
,

【解析】觀察此方程系數(shù)的特點(diǎn),可采用一元二次方程的求根公式法,由于此方程二次項(xiàng)系數(shù)是1,一次項(xiàng)系數(shù)為偶數(shù),也可采用配方法求解。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用配方法和公式法的相關(guān)知識可以得到問題的答案,需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無實(shí)根便得知.有實(shí)根可套公式,沒有實(shí)根要告之.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對教師試卷講評課中學(xué)生參與的深度和廣度進(jìn)行評價,其評價項(xiàng)目為主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價組隨機(jī)抽取了若干名初中生的參與情況,繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中所給的信息解答下列問題:

(1)這次評價中,一共抽查了名學(xué)生;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果全市有16萬初中學(xué)生,那么在試卷講評課中,“獨(dú)立思考”的學(xué)生約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個角的補(bǔ)角比它的余角的 3 倍大 30°,求這個角的度數(shù);

(2)如圖,點(diǎn) C、D在線段 AB上, D是線段 AB的中點(diǎn), AC AD , AB6,求線段 CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你能求(x1)(x99+x98+x97++x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先分別計(jì)算下列各式的值.

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

……

由此我們可以得到:(x1)(x99+x98+x97++x+1)=   

請你利用上面的結(jié)論,再完成下面兩題的計(jì)算:

1)(﹣250+(﹣249+(﹣248++(﹣2+1

2)若x3+x2+x+10,求x2019的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x -4x+c的圖象與x軸沒有交點(diǎn),其中c為常數(shù),則C的取值范圍 是( )
A.c<4
B.c≤4
C.c﹥4
D.c≥4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:E在△ABCAC邊的延長線上,D點(diǎn)在AB邊上,DEBC于點(diǎn)F,DF=EF,BD=CE.求證:△ABC是等腰三角形(過DDG∥ACBCG)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC三條邊的長度分別是,,,記△ABC的周長為CABC

1)當(dāng)x2時,△ABC的最長邊的長度是   (請直接寫出答案);

2)請求出CABC(用含x的代數(shù)式表示,結(jié)果要求化簡);

3)我國南宋時期數(shù)學(xué)家秦九韶曾提出利用三角形的三邊長求面積的秦九韶公式:S.其中三角形邊長分別為ab,c,三角形的面積為S

x為整數(shù),當(dāng)CABC取得最大值時,請用秦九韶公式求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)相似三角形和解直角三角形的相關(guān)內(nèi)容后,張老師請同學(xué)們交流這樣的一個問題:“如上圖,在正方形網(wǎng)格上有△A1B1C1和△A2B2C2 , 這兩個三角形是否相似?”,那么你認(rèn)為△A1B1C1和△A2B2C2 , (相似或不相似);理由是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以線段OA為邊在第四象限內(nèi)作等邊三角形△AOB,點(diǎn)Cx正半軸上一動點(diǎn)(OC1),連接BC,以線段BC為邊在第四象限內(nèi)作等邊三角形△CBD,連接DA并延長,交y軸于點(diǎn)E.

(1)求證:△OBC≌△ABD

(2)在點(diǎn)C的運(yùn)動過程中,∠CAD的度數(shù)是否會變化?如果不變,請求出∠CAD的度數(shù);如果變化,請說明理由.

(3)當(dāng)點(diǎn)C運(yùn)動到什么位置時,以AE,C為頂點(diǎn)的三角形是等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案