【題目】, 定義一種新運算,規(guī)定 (其中, 均為非零常數(shù)),這里等式右邊是通常的四則運算,例: .

已知, .

(1) 的值;

(2)若關(guān)于m的不等式組恰好有3個整數(shù)解,求實數(shù)的取值范圍.

【答案】1, 的值分別為1,3;(2.

【解析】試題分析: (1)已知兩對值代入T中計算求出ab的值;
(2)根據(jù)題中新定義化簡已知不等式,根據(jù)不等式組恰好有3個整數(shù)解,求出p的范圍即可;

試題解析:

(1)根據(jù)題意得:T1,-1= a-b=-2;

T=(4,2)= 2a+b=5,

解得:a=1,b=3;

(2)

由①得:m≥-,

由②得:m,

∴不等式組的解集為-m<,

∵不等式組恰好有3個整數(shù)解,即m=0,1,2,

23,

解得.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】學習了統(tǒng)計知識后,班主任王老師叫班長就本班同學的上學方式進行了一次調(diào)查統(tǒng)計,圖1和圖2是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,計算出“步行”部分所對應(yīng)的圓心角的度數(shù);
(2)求該班共有多少名學生;
(3)在圖1中,將表示“乘車”的部分補充完整.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點B落在點E處,AEDC的交點為O,連接DE

(1)求證:ADE≌△CED;

(2)求證:DEAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y= x+b的圖象與反比例函數(shù)y= (x<0)的圖象交于點A(﹣1,2)和點B,點C在y軸上.

(1)當△ABC的周長最小時,求點C的坐標;
(2)當 x+b< 時,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]2,[3]3,[2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<3>=4,<-2.5>=-2.根據(jù)上述規(guī)定,解決下列問題:

(1)[4.5]______,<3.01>=____;

(2)x為整數(shù),且[x]+<x>=2 017,求x的值;

(3)x,y滿足方程組,求x,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(3,2),B(4,3),C(1,1)

(1)在圖中作出ABC關(guān)于y軸對稱的A1B1C1;寫出點A1,B1,C1的坐標(直接寫答案):A1 ;B1 ;C1 ;

(2)A1B1C1的面積為 ;

(3)在y軸上畫出點P,使PB+PC最小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,若將類似于a、b、c、d四個圖的圖形稱做平面圖,則其頂點數(shù)、邊數(shù)與區(qū)域數(shù)之間存在某種關(guān)系.觀察圖b和表中對應(yīng)的數(shù)值,探究計數(shù)的方法并作答.

1)數(shù)一數(shù)每個圖中各有多少個頂點、多少條邊,這些邊圍出多少個區(qū)域并填表:

平面圖

a

b

c

d

頂點數(shù)(S)

7

邊數(shù)(M)

9

區(qū)域數(shù)(N)

3

2)根據(jù)表中數(shù)值,寫出平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)之間的一種關(guān)系為 ;

3)如果一個平面圖有20個頂點和11個區(qū)域,那么利用(2)中得出的關(guān)系可知這個平面圖有 條邊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x、y的方程組,其中﹣3≤a≤1,給出下列說法:①當a=1時,方程組的解也是方程x+y=2﹣a的解;②當a=﹣2時,x、y的值互為相反數(shù);③若x≤1,則1≤y≤4;是方程組的解.其中說法錯誤的是(  )

A. ①②③④ B. ①②③ C. ②④ D. ②③

查看答案和解析>>

同步練習冊答案