24、如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求證:△BCE≌△DCF;
(2)若AB=15,AD=7,BC=5,求CE的長(zhǎng).
分析:(1)先根據(jù)角平分線的性質(zhì)可證CE=CF,又已知BC=CD,故可根據(jù)HL判定Rt△BCE≌Rt△DCF.
(2)在(1)的基礎(chǔ)上可證CE=CF,又AC=AC,根據(jù)HL證Rt△ACE≌Rt△ACF,即證AF=AE,得到AD+DF=AB-EB,即EB=DF,在Rt△BCE中,再根據(jù)勾股定理可求CE的值.
解答:解:(1)證明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F
∴CE=CF,
在Rt△BCE和Rt△DCF中,
∵CE=CF,BC=CD,
∴Rt△BCE≌Rt△DCF  (HL).(3分)

(2)∵Rt△BCE≌Rt△DCF,
∴DF=EB,CE=CF,CE⊥AB于E,CF⊥AD于F,
∴Rt△ACE≌Rt△ACF,
∴AF=AE,(2分)
∵AB=15,AD=7,
∴AD+DF=AB-EB,
∴EB=DF=4,(2分)
在Rt△BCE中,根據(jù)勾股定理,CE=3.(1分)
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AC平分∠BAD,∠1=∠2,求證:AB=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,已知AC平分∠BAD,∠1=∠2,AB=DC=3,則BC=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,已知AC平分∠BAD,AB∥DC,AB=DC=3,則AD=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,已知AC平分∠BAD,∠1=∠2,求證:AB=AD.
精英家教網(wǎng)精英家教網(wǎng)
(2)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,AC交⊙O于點(diǎn)E,∠BAC=45°.
①求∠EBC的度數(shù);
②求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)試說(shuō)明CE=CF.
(2)△BCE與△DCF全等嗎?試說(shuō)明理由.
(3)若AC=10,CE=6,AD=5,求DF的長(zhǎng)
(4)若AB=21,AD=9,BC=CD=10,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案